эффективные решения для вашего бизнеса  
Дон Изолятор моб: +7 988 540 32 29
тел: (863) 219-12-79
факс: (863) 219-12-79
e-mail: [email protected]
гарантированная защита и надежность
Продукция Контакты Информация
Информация

3 фазный асинхронный электродвигатель


Схемы подключения трехфазного асинхронного электродвигателя и сопутствующие вопросы

Подключение трехфазного асинхронного электродвигателя

Трехфазный асинхронный электродвигатель и подключение его к электрической сети часто вызывает массу вопросов. Поэтому в нашей статье мы решили рассмотреть все нюансы, связанные с подготовкой к включению, определением правильного способа подключения и, конечно, разберём возможные варианты схем включения двигателя. Поэтому не будем ходить вокруг да около, а сразу приступим к разбору поставленных вопросов.

Подготовка асинхронного электродвигателя к включению

На самом первом этапе нам следует определиться с типом двигателя, который мы собрались подключать. Это может быть трехфазный асинхронный двигатель с короткозамкнутым или фазным ротором, двух- или однофазный двигатель, а может быть и вовсе синхронная машина.

Помочь в этом может бирка на электродвигателе, на которой указана нужная информация. Иногда это можно сделать чисто визуально — так как мы рассматриваем подключение трехфазных электрических машин, то двигатель с короткозамкнутым ротором не имеет коллектора, а машина с фазным ротором имеет таковой.

Определение начала и конца обмотки

Трехфазный асинхронный электродвигатель имеет шесть выводов. Это три обмотки, каждая из которых имеет начало и конец.

Для правильного подключения мы должны определить начало и конец каждой обмотки. Существует множество вариантов того, как это сделать — мы остановимся на наиболее простых из них, применимых в домашних условиях.

Обмотки статора электродвигателя
  • Для того чтоб определить начало и конец обмотки трехфазного двигателя своими руками, мы должны для начала определить выводы каждой отдельной обмотки, то есть определить каждую отдельную обмотку.
  • Сделать это достаточно просто. Между концом и началом одной обмотки у нас обязательно будет цепь. Определить цепь нам помогут либо двухполюсный указатель напряжения с соответствующей функцией, либо обычный мультиметр.
  • Для этого один конец мультиметра подключаем к одному из выводов и другим концом мультиметра касаемся поочередно остальных пяти выводов. Между началом и концом одной обмотки у нас будет значение близкое к нулю, в режиме измерения сопротивления. Между остальными четырьмя выводами значение будет практически бесконечным.
  • Следующим этапом будет определение их начала и конца.
ЭДС при различных вариантах соединения обмоток электродвигателя
  • Для того чтоб определить начало и конец обмотки, давайте немного погрузимся в теорию. В статоре электродвигателя имеется три обмотки. Если подключить конец одной обмотки к концу другой обмотки, а на начало обмоток подать напряжение, то в месте подключения ЭДС будет равен или близок к нулю. Ведь ЭДС одной обмотки компенсирует ЭДС второй обмотки. При этом в третьей обмотке ЭДС не будет наводиться.
  • Теперь рассмотрим второй вариант. Вы соединили один конец обмотки с началом второй обмотки. В этом случае ЭДС наводится в каждой из обмоток, в результате получается их сумма. За счет электромагнитной индукции ЭДС наводится в третьей обмотке.
Схема определения начала и конца обмоток электродвигателя
  • Используя этот метод, мы можем найти начало и конец каждой из обмоток. Для этого к выводам одной обмотки подключаем вольтметр или лампочку. А любых два вывода других обмоток соединяем между собой. Два оставшихся вывода обмоток подключаем к электрической сети в 220В. Хотя можно использовать и меньшее напряжение.
  • Если мы соединили конец и конец двух обмоток, то вольтметр на третьей обмотке покажет значение близкое к нулю. Если же мы подключили начало и конец двух обмоток правильно, то, как говорит инструкция, на вольтметре появится напряжение от 10 до 60В (данное значение является весьма условным и зависит от конструкции электродвигателя).
  • Подобный опыт повторяем еще дважды, пока точно не определим начало и конец каждой из обмоток. Для этого обязательно подписывайте каждый полученный результат, дабы не запутаться.

Выбор схемы подключения электродвигателя

Практически любой асинхронный электродвигатель имеет два варианта подключения – это звезда или треугольник. В первом случае обмотки подключаются на фазное напряжение, во втором на линейное напряжение.

Электродвигатель асинхронный трехфазный и подключение звезда–треугольник зависит от особенностей обмотки. Обычно оно указано на бирке двигателя.

Номинальные параметры на бирке электродвигателя
  • Прежде всего, давайте разберемся, в чем отличие этих двух вариантов. Наиболее распространенным является соединение «звезда». Оно предполагает соединение между собой всех трех концов обмоток, а напряжение подается на начала обмоток.
  • При соединении «треугольник» начало каждой обмотки соединятся с концом предыдущей обмотки. В результате каждая обмотка у нас получается стороной равностороннего треугольника – откуда и пошло название.
Разница между схемами соединения «звезда» и «треугольник»
  • Отличие этих двух вариантов соединения состоит в мощности двигателя и условий пуска. При соединении «треугольником» двигатель способен развивать большую мощность на валу. В то же время момент пуска характеризуется большой просадкой напряжения и большими пусковыми токами.
  • В бытовых условиях выбор способа подключения обычно зависит от имеющегося класса напряжения. Исходя из этого параметра и номинальных параметров, указанных на табличке двигателя, выбирают способ подключения к сети.

Подключение асинхронного электродвигателя

Электродвигатель асинхронный трехфазный и схема подключения зависят от ваших потребностей. Наиболее распространенным вариантом является схема прямого включения, для двигателей, подключенных схемой «треугольника», возможна схема включения на «звезде» с переходом на «треугольник», при необходимости возможен вариант реверсивного включения.

В нашей статье мы рассмотрим наиболее популярные схемы прямого включения и прямого включения с возможностью реверса.

Схема прямого включения асинхронного электродвигателя

В предыдущих главах мы подключили обмотки двигателя, и вот теперь пришло время включения его в сеть. Двигатели должны включаться в сеть при помощи магнитного пускателя, который обеспечивает надежное и одновременное включение всех трех фаз электродвигателя.

Пускатель в свою очередь управляется кнопочным постом – те самые кнопки «Пуск» и «Стоп» в одном корпусе.

Трехполюсный автоматический выключатель

Но прежде чем приступать непосредственно к подключению, давайте разберем, какое электрооборудование нам для этого необходимо. Прежде всего, это автоматический выключатель, номинальный ток которого соответствует, либо немного выше номинального тока электродвигателя.

Номинальные параметры пускателей

Следующим коммутационным аппаратом является уже упоминавшийся нами пускатель. В зависимости он номинального тока пускатели разделяются на изделия 1, 2 и т. д. до 8-ой величины. Для нас важно, чтобы номинальный ток пускателя был не меньше, чем номинальный ток электродвигателя.

Кнопочный пост на две кнопки

Пускатель управляется при помощи кнопочного поста. Он может быть двух видов. С кнопками «Пуск» и «Стоп» и с кнопками «Вперед», «Стоп» и «Назад». Если у нас не используется реверс, то нам необходим кнопочный пост на две кнопки и наоборот.

Таблица выбора сечения провода

Кроме указанных аппаратов нам потребуется кабель соответствующего сечения. Так же желательно, но не обязательно, установка амперметра хотя бы на одну фазу, для контроля тока двигателя.

Обратите внимание! Вместо автомата вполне возможно применение предохранителей. Только их номинальный ток должен соответствовать номинальному току двигателя. А также должен учитывать пусковой ток, который у разных типов двигателей колеблется от 6 до 10 крат от номинального.

  1. Теперь приступаем непосредственно к подключению. Его условно можно разделить на два этапа. Первый это подключение силовой части, и второй — подключение вторичных цепей. Силовые цепи – это цепи, которые обеспечивают связь двигателя с источником электрической энергии. Вторичные цепи необходимы для удобства управления двигателем.
  2. Для подключения силовых цепей нам достаточно подключить вывода двигателя с первыми выводами пускателя, выводы пускателя с выводами автоматического выключателя, а сам автомат с источником электрической энергии.

Обратите внимание! Подключение фазных выводов к контактам пускателя и автомата не имеют значения. Если после первого пуска мы определим, что вращение неправильное, мы сможем легко его изменить. Цепь заземления двигателя подключается помимо всех коммутационных аппаратов.

Схема подключения первичных и вторичных цепей схемы включения электродвигателя

Теперь рассмотрим более сложную схему вторичных цепей. Для этого нам, прежде всего, как на видео, следует определиться с номинальными параметрами катушки пускателя. Она может быть на напряжение 220В или 380В.

  • Так же следует разобраться с таким элементом, как блок-контакты пускателя. Данный элемент имеется практически на всех типах пускателей, а в некоторых случаях он может приобретаться отдельно с последующим монтажом на корпус пускателя.
Расположение элементов пускателя
  • Эти блок-контакты содержат набор контактов – нормально закрытых и нормально открытых. Сразу предупредим – не пугайтесь в этом нет нечего сложного. Нормально закрытым называется контакт, который при отключенном положении пускателя – замкнут. Соответственно нормально открытый контакт в этот момент разомкнут.
  • При включении пускателя нормально закрытые контакты размыкаются, а нормально открытые контакты замыкаются. Если мы говорим за электродвигатель трехфазный асинхронный и подключение его к электрической сети, то нам необходим нормально открытый контакт.
Нормально закрытые и нормально открытые контакты
  • Такие контакты есть и на кнопочном посту. Кнопка «Стоп» имеет нормально закрытый контакт, а кнопка «Пуск» нормально открытый. Сначала подключаем кнопку «Стоп».
  • Для этого соединяем один провод с контактами пускателя между автоматическим выключателем и пускателем. Его подключаем к одному из контактов кнопки «Стоп». От второго контакта кнопки должно отходить сразу два провода. Один идет к контакту кнопки «Пуск», второй к блок-контактам пускателя.
Подключение кнопки «Пуск» и «Стоп»
  • От кнопки «Пуск» прокладываем провод к катушке пускателя, туда же подключаем провод от блок-контактов пускателя. Второй конец катушки пускателя подключаем либо ко второму фазному проводу на силовых контактах пускателя, при использовании катушки на 380В, либо он подключается к нулевому проводу, при использовании катушки на 220В.
  • Все, наша схема прямого включения асинхронного двигателя готова к использованию. После первого включения проверяем направление вращения двигателя и если вращение неправильное, то просто меняем местами два силовых провода на выводах пускателя.

Схема реверсивного включения электродвигателя

Распространенным вариантом подключения асинхронного электродвигателя является вариант с использованием реверса. Такой режим может потребоваться в случаях, когда необходимо изменять направление вращения двигателя в процессе эксплуатации.

  • Для создания такой схемы нам потребуются два пускателя из-за чего цена такого подключения несколько возрастает. Один будет включать двигатель в работу в одну сторону, а второй в другую. Тут очень важным моментом является недопустимость одновременного включения обоих пускателей. Поэтому нам необходимо во вторичной схеме предусмотреть блокировку от таких включений.
  • Но сначала давайте подключим силовую часть. Для этого, как и приведенном выше варианте, подключаем от автомата пускатель, а от пускателя — двигатель.
  • Единственным отличием будет подключение еще одного пускателя. Его подключаем к вводам первого пускателя. При этом важным моментом будет поменять местами две фазы, как на фото.
Схема реверсивного подключения электродвигателя с катушкой пускателя на 220В
  • Вывода второго пускателя просто подключаем к выводам первого. Причем здесь уже ничего не меняем местами.
  • Ну, а теперь, переходим к подключению вторичной схемы. Начинается все опять с кнопки «Стоп». Ее подключаем к одному из приходящих контактов пускателя – неважно первого или второго. От кнопки «Стоп» у нас вновь идут два провода. Но теперь один к контакту 1 кнопки «Вперед», а второй к контакту 1 кнопки «Назад».
Схема реверсивного подключения электродвигателя с катушкой пускателя на 220В
  • Дальнейшее подключение приводим по кнопке «Вперед» — по кнопке «Назад» оно идентично. К контакту 1 кнопки «Вперед» подключаем контакт нормально открытого контакта блок-контактов пускателя. Каламбур, но точнее не скажешь. К контакту 2 кнопки «Вперед» подключаем провод от второго контакта блок-контактов пускателя.
  • Туда же подключаем провод, который пойдет к нормально закрытому контакту блок-контактов пускателя номер два. А уже от этого блок-контакта он подключается к катушке пускателя номер 1.  Второй конец катушки подключается к фазному или нулевому проводу в зависимости от класса напряжения.
  • Подключение катушки второго пускателя производится идентично, только ее мы подводим к блок-контактам первого пускателя. Именно это обеспечивает блокировку от включения одного пускателя, при подтянутом положении второго.

Вывод

Способы подключения асинхронного трехфазного электродвигателя зависят от типа двигателя, схемы его соединения и задач, которые стоят перед нами. Мы привели лишь самые распространенные схемы подключения, но существуют и еще более сложные варианты. Особенно это касается асинхронных машин с фазным ротором, которые имеют функцию торможения.

elektrik-a.su

Электродвигатели асинхронные трехфазные технические характеристики схема подключения

Электродвигатель, работающий на переменном токе, использующий вращающееся магнитное поле, которое создается статором, называют асинхронным, если частота поля отличается от той, с которой вращается ротор. Широко распространены электродвигатели асинхронные трехфазные. Технические характеристики их важны для правильной эксплуатации. К ним относятся механические характеристики и рабочие. К первым относят зависимость частоты, с которой вращается ротор, от нагрузки. Зависимость между этими величинами обратно пропорциональная, т.е. чем нагрузка больше, тем частота меньше.

{ ArticleToC: enabled=yes }

Асинхронные электродвигатели и их виды

При этом, как видно из графика, на промежутке от нуля до максимального значения, с увеличением нагрузки снижение частоты незначительно. О таком электродвигателе асинхронном говорят, что его механическая характеристика жесткая.

Электродвигатели асинхронные в изготовлении несложные и надежные, поэтому применяется широко.

Выделяют 3 вида асинхронных электродвигателей с короткозамкнутым ротором:

одно-, двух и трехфазные, а кроме них – асинхронные с фазным ротором.

Однофазные

У первого типа на статоре есть единственная обмотка, на которую поступает переменный ток. Для запуска двигателя асинхронного пользуются обмоткой статора дополнительной, подключаемой на короткое время к сети через емкость или индуктивность, или же замыкаемой накоротко, чтобы добиться начального сдвига фаз, нужного для того, чтобы привести ротор во вращение.

Без этого его не могло бы сдвинуть магнитное поле статора. У такого мотора, как у каждого асинхронного, ротор делают в виде цилиндрического сердечника с алюминиевыми залитыми пазами и лопастями для вентиляции. Подобный ротор, называемый «беличьей клеткой», называется короткозамкнутым.

Электродвигатели асинхронные устанавливают в приборах не требующих большой мощности, типа небольших насосов и вентиляторов.

Двухфазные

Второй тип, т.е. двухфазные – намного эффективнее. На статоре у них две обмотки, которые находятся перпендикулярно друг к другу. При этом на одну из них подают переменный ток, другую соединяют с фазосдвигающим конденсатором, благодаря которому создается магнитное вращающееся поле.

У них также есть короткозамкнутый ротор. Их область использования намного шире, в сравнении с первыми. Двухфазные машины, питающиеся от однофазной сети, называются конденсаторными, поскольку в них обязательно должен стоять фазосдвигающий конденсатор.

Трехфазные

У трехфазный имеется три обмотки на статоре, сдвиг между которыми составляет 120 градусов, поэтому и поля их смещаются на такую же величину при включении. Включив в переменную трехфазную сеть такой электродвигатель, замкнутый накоротко, вращение ротора происходит благодаря появляющемуся магнитному полю.

Обмотки соединяют по одной из схем — «треугольник» или «звезда». Но, у второго соединения напряжение выше, а указано оно на корпусе двумя величинами – 127/220 или же 220/380. Эти моторы незаменимы для работы лебедок, разнообразных станков, кранов подъемных, циркулярок.

Идентичный статор имеется у моторов с фазным ротором. Магнитный провод (шихтовый) уложен у них в пазы вместе с тремя обмотками. Но отсутствуют залитые стержни алюминиевые, но имеется полноценная обмотка, соединена которая «звездой». Три ее конца выводятся на контактные кольца, которые насаживают на роторный вал и изолируют от него.

1 — кожух и жалюзи;

2 – щетки;

3 – держатели щеток со щеточной траверсой;

4 — крепящий траверсу палец;

5 — выводы со щеток;

6 – колодка;

7 – изолирующая втулка;

8 и 26 – контактные кольца;

9 и 23- крышки наружная подшипника и внутренняя;

10 – шпилька, крепящая крышку подшипника к коробке;

11 – щит задний подшипника;

12 и 15- обмотки ротора;

13 – держатель обмотки;

14 — роторный сердечник;

16 и 17 — щит передний подшипника и его наружная крышка;

18 – отверстия для вентиляции;

19 – станина;

20 — статорный сердечник;

21 — шпильки наружной крышки подшипника;

22 – бандаж;

21 – подшипник;

25 – вал;

27 — выводы роторной обмотки

Подключить мотор можно напрямую или через реостат, подав посредством щеток переменное напряжение (трехфазное) на кольца. Последний относится к самому дорогому электродвигателю асинхронному трехфазному. Характеристики его, в частности пусковой момент, под нагрузкой намного большие, благодаря чему их ставят в устройствах, которые запускаются под нагрузкой: в лифтах, подъемных кранах и пр.

Как работает электродвигатель?

Распространены эти электродвигатели достаточно широко на производстве и в быту, поскольку по эффективности они превосходят моторы, работающие от двухфазной сети.

Если у электродвигателя присутствует статор – неподвижный узел, и подвижный ротор, разделенные прослойкой воздуха, т.е. механически не взаимодействующие, а частоты вращения ротора и магнитного поля не одинаковы, его называют асинхронным электродвигателем. Устройство и принцип работы описан ниже.

На статоре находятся три обмотки с магнитопроводом внутри. Сам статор набирается из пластин, изготовленных из электротехнической стали. Расположены они под углом 120 градусов по отношению друг к другу и закреплены в пазах неподвижного статора. Конструкция ротора опирается на подшипники. Для вентиляции предусмотрена крыльчатка.

Видео: Электродвигатель

Из-за того, что между частотой, с которой вращается ротор и магнитное поле, существует задержка, т.е. первый как бы догоняет поле, но сделать этого не может из-за меньшей частоты вращения, его называют асинхронным электродвигателем. Принцип работы заключается в индуцировании токов ротором, создающим свое поле, которое, в свою очередь, взаимодействует со статорным магнитным полем, заставляя двигаться ротор.

Скорость вращения вала можно изменять, используя регулятор скорости вращения асинхронного электродвигателя, т.е. метод изменения ее регулирования с помощью изменения фазного напряжения или с использованием широтно-импульсной модуляции.

В качестве регулятора скорости вращения электродвигателя использовать можно инвертор (регулятор-стабилизатор напряжения), который играть будет роль источника питания. Напряжение питания после регулятора изменяться будет в соответствие с частотой вращения.

Могут электродвигатели быть многоскоростными, т.е. предназначенные для механизмов, которым необходимо ступенчатое регулирование частоты вращения. В их маркировке присутствуют символы: АОЛ, АО2, 4А и др. Схема подключения есть в паспорте или приведена на клеммной коробке.

Важной особенностью двухскоростных является возможность функционирования в двух режимах. Они маркируются (отечественные): АМХ, АД, АИР, 5АМ, АИРХМ. Чтобы подобрать импортный двигатель двухскоростной, нужно точно указать данные таблицы, имеющейся на корпусе.

Преимущества

Главным достоинством является:

  • Простая конструкция электродвигателя, отсутствие изнашиваемых быстро деталей (нет коллекторной группы) и дополнительного трения (та же причина).
  • Не нужны дополнительные преобразования для питания, поскольку оно осуществляется напрямую от сети трехфазной промышленной.
  • Малое число деталей делает мотор весьма надежным.
  • Срок службы у него внушительный.
  • Он прост для обслуживания и ремонта.

Недостатки, конечно, тоже имеются.

К ним относятся:

  • небольшой пусковой момент, из-за которого ограничена область его применения;
  • значительные потребляемые токи запуска, порой превышающие в системе электроснабжения допустимые значения;
  • большая потребляемая мощность реактивная, снижающая механическую мощность.

Схемы подключения

Есть два варианта подключения, обеспечивающие работу асинхронного электродвигателя — схема подключения «звезда» и «треугольник».

Звезда

Ее применяют для трехфазной цепи, у которой величина линейного напряжения составляет 380 вольт. Особенностью соединения звездой является то, что концы обмоток должны соединяться в одной точке: С4, С5 и С6 (U2, V2 и W2). Начала же обмоток: С1, С2 и С3 (U1, V1 и W1), подключаются к проводникам A, B и C (L1, L2 и L3) через коммутационную аппаратуру.

Напряжение между началами соответствует 380 вольтам, а в местах, где соединяются с обмотками фазные проводники – 220в.

Подключение асинхронного электродвигателя на 220 обозначается Y. Для защиты от перегрузок электродвигателя в точке соединения обмоток подключают нейтраль.

Подобное соединение, двигателю электрическому, который приспособлен к работе от 380 вольт, не позволяет достигать полной мощности, поскольку напряжение обмоток всего 220в. Но зато оно защищает от перегрузок по току, благодаря чему старт является плавным.

Взглянув в коробку с клеммами легко понять, по какой схеме выполнено подключение. Если присутствует перемычка, соединяющая 3 вывода, то используется «звезда».

Треугольник

Если концы обмоток соединены с началом предыдущих, значит это «треугольник».

По старой маркировке С4 соединяют с выводом С2, далее — С5 с С3, а С6 с С1. В новом варианте маркировки это выглядит так: соединяют U2 и V1, V2 и W1, W2 и U1. Величина напряжения между обмотками равно 380 в. Но, не требуется при этом соединение с нейтралью, или «рабочим нулем». Особенностью этого подключения являются большие значения пусковых токов, опасных для проводки.

В практике порой используют подключение комбинированное, т.е. во время запуска и разгона применяют «звезду», а «треугольник» используют в дальнейшем, т.е. рабочем режиме.

Определить, что для подключения применили схему «треугольник» поможет клеммная коробка, точнее три перемычки между клеммами.

О преобразовании энергии

Энергия, которую подают на статорные обмотки преобразуется асинхронным электродвигателем в энергию вращения ротора, т.е. механическую. Но величина мощности на выходе и входе – разные, поскольку часть ее теряется на вихревые токи и гистерезис, на трение и нагрев.

Она рассеивается в виде выделяемого тепла, поэтому и для охлаждения и нужен вентилятор. Тем не менее, кпд асинхронных электродвигателей в широком диапазоне нагрузок высок и достигает 90% и 96% для очень мощных.

Достоинства трехфазной системы

Основным достоинством трехфазных, если сравнивать с одно- и двухфазными моторами, считается экономичность. В этом случае, для передачи энергии имеется три провода, а относительный сдвиг токов в них равен 120 градусов. Значение амплитуд и частот с синусоидальным ЭДС одинаково на разных фазах.

Важно: при любом соединении, зависящем от напряжения, соединяться концы обмоток могут внутри мотора (три выходящих из него провода) или выводиться наружу (6 проводов).

Какие есть варианты исполнения электродвигателей?

Присутствие в маркировке буквы «У» говорит о том, что назначение электродвигателя – работа в умеренном климате, где годичные температуры находятся в диапазоне + 40 градусов – 40 градусов. Для тропического климата должна присутствовать в маркировке «Т».

Значит, работает мотор нормально в интервале температур от +50 до -10. Для морского климата в обозначении есть «ОМ», для всех районов, кроме очень холодных – «О» (+35 – 10 градусов). Наконец, для районов с очень холодным климатом – «УХЛ», что означает нормальное функционирование при температуре от плюс 40 до минус шестидесяти градусов.

Делятся электродвигатели и по вариантам специального исполнения. Если вы видите букву «С», означает это, что двигатель с повышенным скольжением. Если «Р» — с высоким пусковым моментом, «К» — с фазным ротором, с «Е» — электромагнитным встроенным тормозом.

Помимо этого, они бывают:

  • на крепежных лапах, находящихся на основании кожуха и отверстиями, предназначенными для крепления. Подобные двигатели стоят в станках деревообрабатывающих и компрессорах, в электромашинах с ременной передачей и пр.;
  • во фланцевом исполнении, т.е. на корпусе фланцы имеют отверстия для крепежа к редуктору. Используются часто в электронасосах, бетономешалках и прочих устройствах;
  • комбинированными, т.е. имеющими фланцы и лапы. Их называют универсальными, поскольку крепиться они могут к любому оборудованию.

Синхронные и асинхронные электродвигатели, или о различиях между ними

Помимо моторов асинхронных, существуют синхронные, отличающиеся от первых тем, что частота вращающегося ротора, соответствует той, которую имеет магнитное поле. Его главными элементами являются индуктор, находящийся на роторе, и якорь, располагающийся на статоре. Их разделяет, как и у асинхронных, воздушная прослойка. Функционируют они как электродвигатель или генератор.

В первом варианте устройство функционирует благодаря взаимодействию магнитного поля, создаваемого на якоре, с полем на полюсах индуктора. Функционирование в режиме генератора обеспечивает электромагнитная индукция, вызванная вращающимся якорем в магнитном поле, сформированном в обмотке.

Поле, взаимодействует с фазами обмотки статора по очереди, образуя электродвижущую силу. По конструкции синхронные моторы более сложные, чем асинхронные.

Вывод: у синхронных электродвигателей частота вращения ротора одинакова с частотой магнитного поля, а у асинхронного они разные.

Эти особенности определяют использование первых там, где нужна мощность 100 кВт и больше, вторых – в случаях до 100 кВт.

Видео: Асинхронный двигатель.Модель и принцип работы.

motocarrello.ru

Однофазные и трёхфазные асинхронные двигатели

Доброго времени, уважаемые читатели моего блога nasos-pump.ru

В рубрике «Общее» рассмотрим область применения, сравнительные характеристики, преимущества и недостатки трехфазных и однофазных асинхронных двигателей. Мы рассмотрим также возможность подключения трехфазного двигателя в сеть питания 220 вольт. Асинхронные двигатели в наше время широко применяются в различных сферах промышленности и сельского хозяйства. Они используются как электропривода в металлорежущих станках, транспортёрах, подъёмно-транспортных машинах, вентиляторах, насосном оборудовании и т. д. Двигатели малой мощности применяются в устройствах автоматики. Столь широкое применение электрических асинхронных двигателей объясняется их преимуществами по сравнению с другими типами двигателей.

Асинхронные двигатели, по виду питающего напряжения, бывают однофазные и трехфазные. Однофазные в основном используются до мощности 2,2 кВт. Это ограничение по мощности связано из-за слишком больших пусковых и  рабочих токов. Принцип работы однофазных асинхронных двигателей такой же, как и у трёхфазных. С единственной разницей у однофазных двигателей более низкий пусковой момент.

Принцип работы и схемы подключения трехфазных двигателей

Мы знаем, что электрический двигатель состоит из двух основных элементов статора и ротора. Статор – это неподвижная часть двигателя, а ротор является его подвижной частью. Трехфазные асинхронные двигатели имеют три обмотки, которые располагаются относительно друг друга под углом 120°.Когда на обмотки подать переменное напряжение, в статоре создается вращающееся магнитное поле. Переменным током называется: ток, который периодически изменяет свое направление в электрической цепи так, что среднее значение силы тока за период равно нулю. (Рис 1).

Переменный электрический ток

Фазы на рисунке изображены в виде синусоид. Вращающееся магнитное поле статора формирует вращающий магнитный поток. Так как вращающееся магнитное поле статора движется быстрее ротора, то оно под действием индукционных токов образующихся в обмотках ротора, создает магнитное поле ротора. Магнитные поля статора и ротора формируют свои магнитные потоки, эти потоки притягиваются друг к другу и создают вращающий момент, под действием которого ротор начинает вращаться. Более подробно о принципе работы трехфазных двигателей можно посмотреть здесь.

В клеммой колодке у трехфазных двигателей может быть от трех до шести клемм. На эти клеммы выведены либо начало обмоток (3 клеммы), либо начало и окончание обмоток (6 клемм). Начало обмоток принято обозначать латинскими буквами U1, V1 и W1, окончания обозначаются соответственно U2, V2 и W2. В отечественных двигателях обмотки обозначаются С1, С2, С3 и С4, С5, С6 соответственно. Кроме того в клеммой коробке могут быть еще и дополнительные клеммы на которые выводятся встраиваемая в обмотки тепловая защита. Для двигателей, которые имеют шесть клемм, существует два варианта подключения обмоток в трехфазную сеть: «звезда» и «треугольник» (Рис. 2).  

Подсоединение звезда, треугольник

Подключение по схеме «звезда» (Y) можно получить, если замкнуть между собой клеммы W2, U2 и V2, а на клеммы W1, U1 и V1 подать напряжение питающей сети. При таком подсоединении ток фаз равен току сети, а напряжение фаз равно напряжению сети разделенное на корень из трех.Подключение по схеме «звезда» (Y) можно получить, если замкнуть между собой клеммы W2, U2 и V2, а на клеммы W1, U1 и V1 подать напряжение питания. При таком подсоединении ток фаз равен току сети, а напряжение фаз равно напряжению сети разделенное на корень из трех.Подключение по схеме «треугольник» (∆) можно получить, подсоединив попарно перемычками клеммы U1 – W2, V1 – U2, W1 – V2 и подать на перемычки напряжение питания. При таком подсоединении ток фаз равен току питающей сети, разделенному на корень из трех, а напряжение фаз равно напряжению сети.При помощи данных схем можно подключить трехфазный асинхронный двигатель на два напряжения. Если посмотреть на фирменную табличку трехфазного двигателя, то там указаны рабочие напряжения, при, которых работает данный электродвигатель (Рис. 3). 

Фирменная табличка на трехфазном двигателе

Например, 220-240/380-415: двигатель работает на напряжении 220 вольт при соединении его обмоток в «треугольник» и 380 вольт при соединении обмоток в «звезду». На более низкие напряжения, обмотки статора всегда подсоединяется в «треугольник». На более высокое напряжение обмотки подсоединяются в «звезду». Потребляемый ток при подключении двигателя в «треугольник» равен 5,9 ампер, при подключении в «звезду» ток равен 3,4 ампера. Чтобы изменить направление вращения трехфазного асинхронного двигателя достаточно поменять местами любых два провода на клеммах.

Принцип работы и схема подключения однофазных двигателей

Однофазные асинхронные электродвигатели имеют две обмотки, которые расположены под углом 90° в отношении друг к другу. Одна обмотка называется основной, а вторая – пусковой или вспомогательной. В зависимости от количества полюсов каждая обмотка может разделиться не несколько секций. Между однофазными и трехфазными двигателями существуют различия. У однофазного двигателя происходит смена полюсов при каждом цикле, а у трехфазного бегущее магнитное поле. Однофазный электродвигатель нельзя запустить в работу самостоятельно. Для его запуска используются различные способы: пуск через конденсатор и работа через обмотку, пуск через конденсатор и работа через конденсатор, с постоянной пусковой емкостью, с реостатным пуском. Наибольшее распространение нашли однофазные, эклектические двигатели, оснащенные рабочим конденсатором, постоянно подключенным и подсоединенным последовательно с пусковой (вспомогательной) обмоткой. Таким образом, пусковая обмотка становится вспомогательной, когда электродвигатель достигает рабочей частоты вращения. Как подключены обмотки в однофазном двигателе, можно посмотреть на (Рис. 4)

Схема однофазного двигателя

Для однофазных асинхронных двигателей существуют некоторые ограничения. Они ни в коем случае не должны работать при малых нагрузках и в режиме холостого хода, так как происходит перегрев двигателя. По той же причине не рекомендуется эксплуатировать двигатели при нагрузке меньше 25% от полной нагрузки.

На (Рис. 5) изображена фирменная табличка с характеристиками двигателя, который применяется в насосе фирмы Pedrollo. На ней находится вся необходимая информация о двигателе и насосе. Характеристики насоса мы рассматривать не будем.

Фирменная табличка однофазного двигателя

Из заводской таблички видно, что это однофазный двигатель и  рассчитан он на подключение в сеть с напряжением 220-230 вольт переменного тока, частотой 50 герц. Количество оборотов 2900 в минуту. Мощность этого двигателя составляет 0,75 кВт или одна лошадиная сила (НР). Номинальный потребляемый ток 4 ампера. Емкость конденсатора для данного двигателя составляет 20 микрофарад. Конденсатор должен быть с рабочим напряжением 450 вольт.

Преимущества и недостатки трехфазных двигателей

К преимуществам асинхронных трехфазных двигателей можно отнести:

  • низкая цена, по сравнению с коллекторными двигателями;
  • высокая надёжность;
  • простота конструкции;
  • длительный срок эксплуатации;
  • работают непосредственно от сети переменного тока.

К недостаткам асинхронных двигателей следует отнести:

  • чувствительность к изменениям питающего напряжения;
  • пусковой ток при включении в сеть довольно высок;
  • низкий коэффициент мощности, при малых нагрузках и на холостом ходу;
  • для плавной регулировки частоты вращения необходимо применять частотные преобразователи;
  • потребляет реактивную мощность, очень часто при применении асинхронных двигателей в связи с нехваткой мощности могут возникать проблемы с питающим напряжением.

Преимущества и недостатки однофазных двигателей

К преимуществам однофазных асинхронных двигателей можно отнести:

  • невысокая стоимость;
  • простота конструкции;
  • длительный срок эксплуатации;
  • высокая надежность;
  • работа от сети переменного тока 220 вольт без преобразователей;
  • низкий уровень шума по сравнению с коллекторными двигателями.

К недостаткам однофазных асинхронных двигателей следует отнести:

  • очень высокие пусковые токи;
  • большие габариты и вес;
  • ограниченный диапазон по мощности;
  • чувствительность к изменениям питающего напряжения;
  • при плавной регулировке частоты вращения необходимо применять частотные преобразователи (в продаже имеются частотные преобразователи для однофазных двигателей).
  • нельзя использовать в режимах малой нагрузки и холостого хода.

Несмотря на многочисленные недостатки и благодаря многим преимуществам асинхронные двигатели успешно работают в различных областях промышленности, сельского хозяйства и быта. Они делают жизнь современного человека более комфортной и удобной.

Трехфазный двигатель в однофазной сети

В жизни иногда бывают ситуации, когда необходимо какое-то промышленное оборудование включить в домашнюю сеть 220 вольт. И тут возникает вопрос, а можно ли это сделать? Ответ – да, хотя в этом случае неизбежны потери мощности и момента на валу двигателя. Кроме того это касается асинхронных двигателей до мощности 1-1,5 кВт. Для запуска трехфазного двигателя в однофазную сеть, надо сымитировать фазу со сдвигом на определенный угол (оптимально на 120°). Добиться этого сдвига можно, если использовать фазосдвигающий элемент. Наиболее подходящим элементом является конденсатор. На (Рис. 6) приведены схемы включения трехфазного двигателя в однофазную сеть при подсоединении обмоток в «звезду» и «треугольник»

Схемы включения двигателя

При запуске двигателя требуется усилие, чтобы преодолеть силы инерции и трения покоя. Для увеличения момента вращения, нужно установить дополнительный конденсатор, подсоединяемый к основной схеме только в момент запуска, а после запуска его нужно отключить. В этих целях лучшим вариантом будет применение замыкающейся кнопки SA без фиксации положения. На кнопку следует нажать в момент подачи напряжения питания, и пусковая емкость Сп. создаст дополнительной сдвиг фазы. Когда двигатель раскрутится до номинальных оборотов, кнопку нужно отпустить, и в схеме будет использоваться только рабочий конденсатор Сраб.

Расчет величины емкости

Емкость конденсатора можно определить методом подбора, начиная с небольшой емкости и постепенно переходить к более большим емкостям, до получения подходящего варианта. А когда еще есть возможность измерить ток (наиболее низкое его значение) в сети и на рабочем конденсаторе, то можно подобрать наиболее оптимальную емкость. Замер тока нужно проводить при работающем двигателе. Пусковая емкость рассчитывается исходя из требования по созданию достаточного пускового момента. Но этот процесс довольно длительный и трудоемкий. На практике часто пользуются боле быстрым способом. Есть  простой способ вычисления емкости, правда эта формула дает скорее порядок цифр, но не ее значение. И повозиться в этом случае тоже придется.

Сраб =66•Pн

Где

Сраб — рабочая емкость конденсатора в мкФ;

Рн — номинальная мощность двигателя кВт.

Данная формула действительна при подключении обмоток трехфазного двигателя в «треугольник». Исходя из формулы на каждые 100 Вт мощности трехфазного двигателя, потребуется емкость порядка 7 мкФ.

Если емкость конденсатора подобрана больше, чем необходимо, двигатель будет перегреваться, а если же емкость будет меньше, то мощность двигателя будет занижена.

В некоторых случаях помимо рабочей емкости Сраб. используется и пусковой конденсатор Сп. Емкость обеих конденсаторов нужно знать, иначе двигатель работать не будет. Сначала определим значение емкости, необходимой для того, чтобы заставить ротор вращаться. При параллельном включении емкость Сраб и Сп. складываются. Нам также потребуется значение номинального тока Iн. Данную информацию мы можем посмотреть на фирменной табличке, прикрепленной к двигателю.

Расчет емкости конденсатора производится в зависимости от схемы подключения трехфазного двигателя. При подсоединении обмоток двигателя в «звезду» расчет емкости проводится по следующей формуле:

Сраб =2800•I/U;

В случае соединения обмотки двигателя в «треугольник», рабочая емкость рассчитывается так:

Сраб =4800•I/U;

Где:

Сраб — рабочая емкость конденсатора в мкФ;

I – номинальный ток в амперах;

U – напряжение в вольтах.

Емкость дополнительного пускового конденсатора должна быть в 2 – 3 раза больше чем емкость рабочего. Если, к примеру, емкость рабочего конденсатора равна 70 мкФ, то пусковая емкость конденсатора должна быть 70-140 мкФ. Что в сумме составит 140-210 мкФ.

Для трехфазных двигателей мощностью до 1 (кВт) достаточно только рабочего конденсатора Сраб, дополнительный конденсатор Сп можно не подключать. При подборе конденсатора для трехфазного двигателя, включенного в однофазную сеть важно правильно учесть его рабочее напряжение. Рабочее напряжение конденсатора должно быть не менее 300 Вольт. Если конденсатор будет иметь рабочее напряжение больше, в принципе ничего плохого не произойдет, но при этом увеличиваются его габариты, и, конечно же, цена. Если конденсатор выбрать с рабочим напряжением меньше чем требуется, то конденсатор очень быстро выйдет из строя и может даже взорваться. Очень часто бывают такие ситуации, когда в наличии нет конденсатора необходимой емкости. Тогда необходимо подключить несколько конденсаторов параллельно или последовательно, чтобы получить требуемую емкость. Нужно помнить, что при параллельном подключении нескольких конденсаторов, общая емкость складывается, а при  последовательном соединении общая емкость уменьшается исходя из формулы: 1/С=1/С1+1/С2+1/С3… и так далее. Также следует не забывать о рабочем напряжении конденсатора. Напряжение на всех подключаемых емкостях параллельно должно быть не ниже номинального. А напряжение на подключаемых емкостях последовательно, на каждом из конденсаторов может быть меньше номинального, но общая сумма напряжений должна бить не ниже номинального. Приведу пример, есть два конденсатора емкостью 60 мкФ с рабочим напряжением 150 вольт каждый. При подсоединении их последовательно, общая их емкость составит 30 мкФ (уменьшится), а рабочее напряжение увеличится до 300 вольт. На этом, пожалуй, все.

Спасибо за проявленный интерес.

P.S. Понравился пост? Порекомендуйте его своим друзьям и знакомым в социальных сетях.

nasos-pump.ru

Схемы подключения трехфазного двигателя. К 3-х и 1-о фазной сети

Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют производительность гораздо выше, чем однофазные моторы на 220 вольт. Поэтому, если в рабочем помещении проведены три фазы переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства. Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.

Схемы подключения трехфазного двигателя

Из множества созданных схем специалистами для монтажа асинхронного двигателя практически используют два метода:

  • Схема звезды.
  • Схема треугольника.

Названия схем даны по методу подключения обмоток в питающую сеть. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя.

Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, и никаких проблем в работе нет. Но иногда нужно произвести электрические измерения.

Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%. Поэтому по мощности схема треугольника остается в выигрыше. Существует особенность по нагрузке тока. Сила тока резко увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки. Это приводит к нарушению изоляции, и поломке электродвигателя.

Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В. Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В противном случае моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде. Изредка производится монтаж схемы треугольника для получения от двигателя наибольшей мощности, применяемой в специальных видах промышленного оборудования.

Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме. Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключать по любой схеме. При монтаже по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой. Фазное питание подсоединяется к точкам узлов концов обмоток.

Проверка схемы подключения мотора

Представим худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель. В этом случае необходимо разобрать электродвигатель, снять крышки, разобрать внутреннюю часть, разобраться с проводами.

Метод определения фаз статора

После разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальных выводах.  Нужно помнить, что обязательна маркировка проводов, любым способом.

Если в наличии нет мультиметра или другого прибора, то используют самодельные пробники, сделанные из лампочки, проводов и батарейки.

Полярность обмоток
Чтобы найти и определить полярность обмоток, необходимо применить некоторые приемы:
  • Подключить импульсный постоянный ток.
  • Подключить переменный источник тока.

Оба способа действуют по принципу подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.

Как проверить полярность обмоток батарейкой и тестером

На контакты одной обмотки подключают вольтметр с повышенной чувствительностью, который может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом. В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу. Для 3-й обмотки опыт повторяют.

Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.

Проверка переменным током

Две любые обмотки включают параллельно концами к мультиметру. На третью обмотку включают напряжение. Смотрят, что показывает вольтметр: если полярность обеих обмоток совпадает, то вольтметр покажет величину напряжения, если полярности разные, то покажет ноль.

Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Далее, производят контрольные измерения.

Схема звезды

Этот тип схемы подключения трехфазного двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы.

Такую схему создают после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат подают фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.

Величину емкости конденсаторов (рабочих) определяют по эмпирической формуле:

С = (2800 · I) / U

Для схемы запуска емкость повышают в 3 раза. В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. В противном случае произойдет, перегрев устройства, пробой изоляции.

Подключение мотора в работу хорошо делать через выключатель ПНВС, как показано на рисунке.

В нем уже сделана пара контактов замыкания, которые вместе подают напряжение на 2 схемы путем кнопки «Пуск». Во время отпускания кнопки цепь разрывается. Такой контакт применяют для запуска цепи. Полное отключение питания делают, нажав на «Стоп».

Схема треугольника

Схемы подключения трехфазного двигателя треугольником является повтором прошлого варианта в запуске, но имеет отличие методом включения обмоток статора.

Токи, проходящие в них, больше значений цепи звезды. Рабочие емкости конденсаторов нуждаются в повышенных номинальных емкостях. Они рассчитываются по формуле:

С = (4800 · I) / U

Правильность выбора емкостей также вычисляют по отношению токов в катушках статора путем измерения с нагрузкой.

Двигатель с магнитным пускателем

Трехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем. Такая схема имеет дополнительно блок включения и выключения, с кнопками Пуск и Стоп.

Одна фаза, нормально замкнутая, соединенная с мотором, подключается к кнопке Пуск. При ее нажатии контакты замыкаются, ток идет к электромотору. Необходимо учитывать, что при отпускании кнопки Пуск, клеммы разомкнутся, питание отключится. Чтобы такой ситуации не произошло, магнитный пускатель дополнительно оборудуют вспомогательными контактами, которые называют самоподхватом. Они блокируют цепь, не дают ей разорваться при отпущенной кнопке Пуск. Выключить питание можно кнопкой Стоп.

В результате, 3-фазный электромотор можно подключать к сети трехфазного напряжения совершенно разными методами, которые выбираются по модели и типу устройства, условиям эксплуатации.

Подключение мотора от автомата
Общий вариант такой схемы подключения выглядит как на рисунке:

Здесь показан автомат защиты, который выключает напряжение питания электромотора при чрезмерной нагрузке по току, и по короткому замыканию. Автоматический защитный выключатель – это простой 3-полюсный выключатель с тепловой автоматической характеристикой нагруженности.

Для примерного расчета и оценки нужного тока тепловой защиты, необходимо мощность по номиналу двигателя, рассчитанного на работу от трех фаз, увеличить в два раза. Номинальная мощность указывается на металлической табличке на корпусе мотора.

Такие схемы подключения трехфазного двигателя вполне могут работать, если нет других вариантов подключения. Длительность работы нельзя прогнозировать. Это тоже самое, если скрутить алюминиевый провод с медным. Никогда не знаешь, через какое время скрутка сгорит.

При применении схемы подключения трехфазного двигателя нужно аккуратно выбрать ток для автомата, который должен быть на 20% больше тока работы мотора. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка.

Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание.

Если электродвигатель в одном числе, и работает полную смену, то есть следующие недостатки:
  • Нельзя отрегулировать тепловой ток сработки автоматического выключателя. Чтобы защитить электромотор, ток защитного отключения автомата устанавливают на 20% больше рабочего тока по номиналу мотора. Ток электродвигателя нужно через определенное время замерять клещами, настраивать ток тепловой защиты. Но у простого автоматического выключателя нет возможности настроить ток.
  • Нельзя дистанционно выключить и включить электродвигатель.
Похожие темы:

electrosam.ru

12.3. Устройство трехфазных асинхронных двигателей

Все трехфазные асинхронные двигатели имеют конструктивно одинаковые статоры и различаются выполнением обмотки ротора. По конструкции обмотки ротора эти двигатели подразделяются на два типа: с короткозамкнутой обмоткой (короткозамкнутые) и с фазной обмоткой (так называемые двигатели с фазным ротором или с контактными кольцами).

Трехфазный двигатель предназначен для включения в трехфазную сеть, поэтому он должен иметь обмотку статора, состоящую из трех фазных обмоток, при прохождении через которые токи, поступающие из трехфазной сети, возбуждают вращающееся магнитное поле. Для усиления магнитного поля и придания ему необходимой формы сер­дечник статора и ротора выполняют из электротехнической стали. Для уменьшения потерь в стали сердечники собирают из тонких листов электротехнической стали, изолированных друг от друга слоем лака.

На рис. 12.4 показана конструктивная схема поперечного разреза асинхронного двигателя, состоящего из корпуса (станина) статора 1, сердечника статора 2, обмотки статора 3, сердечника ротора 4, обмоток ротора 5, воздушного зазора между внутренней поверхностью сердечника статора и поверхностью ротора 6, вентиляционных каналов 7, вала ротора 8. К корпусу двигателя, который отли­вают из чугуна или стали, прикрепляют все остальные части двигателя. Сердеч­ник статора имеет вид полого цилиндра с продольными пазами по внутренней поверхности. В пазы укладываются три одинаковые фазные обмотки, сдвинутые относительно друг друга на угол 120°. Внутри корпуса сердечник статора укреп­ляется с помощью прокладок из не.магнитного материала для того, чтобы не допускать образования в нем маг­нитного поля и, следовательно, вихре­вых токов.

Ранее было установлено, что вращающееся магнитное поле при р = 1 и f = 50 Гц имеет частоту вращения n = 3000 об/мин. Если же требуется меньшая частота вращения, то необходимо соответственно уменьшить частоту вращения поля. Для этого статоры выполняют с многополюсными обмотками (р > 1). В многополюсной обмотке каждой паре полюсов вращающегося поля соответствуют три катушки. Если же необходимо иметь р пар полюсов, то число катушек обмотки статора равно 3р, т. е. по р катушек в каждой фазной обмотке.

Рассмотрим устройство роторов асинхронных двигателей. Коротко-замкнутый ротор состоит из стального вала, цилиндрического сердеч­ника, насаженного на вал ротора, короткозамкнутой обмотки и лопастей, осуществляющих вентиляцию машины.

Ротор асинхронного двигателя, как и роторы других электрических машин, удерживается с помощью боковых подшипниковых щитов, прикрепленных болтами к корпусу машины. Два боковых подшипниковых щита имеют центральные отверстия для подшипников, в которых вра­щается ротор. На рис. 12.5, а показан продольный разрез асинхронного двигателя с короткозамкнутым ротором, на рис. 12.5, б — схема его включения. На рисунке 1 — корпус; 2 — сердечник статора; 3 — лобовая часть обмотки статора, т. е. часть, находящаяся вне пазов; 4 - сердечник ротора; 5 — вал; 6 — подшипник; 7 — подшипниковый щит.

Сердечник ротора имеет вдоль поверхности продольные пазы, в которые укладывается обмотка, представляющая собой неизолирован­ные медные или алюминиевые стержни, замкнутые накоротко на торцах ротора

двумя торцовыми кольцами.

Если эту обмотку мысленно вынуть из стального цилиндрического сердечника ротора, то она будет выглядеть как беличья клетка (рис. 12.6). Следует отметить, что обмотка короткозамкнутого ротора не изолируется от сердечника из-за того, что между удельными сопротивлениями обмотки и стали сердечника имеется зна­чительная разница и индуцированные в обмотке токи замы­каются в основном по ее стержням и торцовым кольцам.

В асинхронных двигателях средней и малой мощности коротко-замкнутую обмотку ротора получают путем заливки расплавленного алюминиевого сплава в продольные пазы сердечника. Вместе с обмот­кой отливают также торцовые короткозамыкающие кольца и лопасти для вентиляции машины.

У двигателей с фазным ротором в продольные пазы сердечника ротора укладывают три одинаковые изолированные обмотки (фазы), выполненные по типу статорной обмотки, т, е. смещенные между собой в пространстве на 120°, причем концы фаз объединены в общую точку, образуя звезду, а начала присоединены к трем контактным кольцам, размещенным на валу. С помощью щеток, прижимающихся к контактным кольцам, в каждую фазу обмотки ротора можно ввести добавочное активное сопротивление от трехфазного реостата. С увеличением актив­ного сопротивления обмотки ротора уменьшается пусковой ток, т. е. облегчается пуск двигателя, а также увеличивается пусковой момент вплоть до максимального значения. Кроме того, изменяя с помощью реостата активное сопротивление цепей ротора, можно регулировать частоту вращения двигателя. Все это позволяет применять двигатели с фазным ротором для привода машин и механизмов, требующих при пуске больших пусковых моментов (компрессоры, грузоподъемные машины и др.).

Трехфазный асинхронный двигатель с фазным ротором (рис. 12.7) состоит из обмотки статора 1, обмотки ротора 2, вала 3, контактных колец 4, реостата 5.

По конструктивному выполнению двигатели с короткозамкнутым ротором проще двигателей с контактными кольцами. Они более надежны в работе, однако имеют сравнительно небольшой пусковой момент. Поэтому их применяют для привода машин, для которых не требуются большие пусковые моменты, а также машин и механизмов небольшой мощности. Асинхронные двигатели малой мощности и микродвигатели выполняют также с короткозамкнутыми роторами.

studfiles.net

Асинхронный двигатель с короткозамкнутым ротором: конструкция, принцип работы

Учитывая то, что электроснабжение традиционно осуществляется путём доставки потребителям переменного тока, понятно стремление к созданию электромашин, работающих на поставляемой электроэнергии. В частности, переменный ток активно используется в асинхронных электродвигателях, нашедших широкое применение во многих областях деятельности человека. Особого внимания заслуживает асинхронный двигатель с короткозамкнутым ротором, который в силу ряда причин занял прочные позиции в применении.

Секрет такой популярности состоит, прежде всего, в простоте конструкции и дешевизне его изготовления. У электромоторов на короткозамкнутых роторах есть и другие преимущества, о которых вы узнаете из данной статьи. А для начала рассмотрим конструктивные особенности этого типа электрических двигателей.

Конструкция

В каждом электромоторе есть две важных рабочих детали: ротор и статор. Они заключены в защитный кожух. Для охлаждения проводников обмотки на валу ротора установлен вентилятор. Это общий принцип строения всех типов электродвигателей.

Конструкции статоров рассматриваемых электродвигателей ничем не отличаются от строения этих деталей в других типах электромоторов, работающих в сетях переменного тока. Сердечники статора, предназначенного для работы при трехфазном напряжении, располагаются по кругу под углом 120º. На них устанавливаются обмотки из изолированной медной проволоки определённого сечения, которые соединяются треугольником или звездой. Конструкция магнитопровода статора жёстко крепится на стенках цилиндрического корпуса.

Строение электродвигателя понятно из рисунка 1. Обратите внимание на конструкцию обмоток без сердечника в короткозамкнутом роторе.

Рис. 1. Строение асинхронного двигателя с КЗ Ротором

Немного по-другому устроен ротор. Конструкция его обмотки очень похожа на беличью клетку. Она состоит из алюминиевых стержней, концы которых замыкают короткозамыкающие кольца. В двигателях большой мощности в качестве короткозамкнутых обмоток ротора можно увидеть применение медных стержней. У этого металла низкое удельное сопротивление, но он дороже алюминия. К тому же медь быстрее плавится, а это не желательно, так как вихревые токи могут сильно нагревать сердечник.

Конструктивно стержни расположены поверх сердечников ротора, которые состоят из трансформаторной стали. При изготовлении роторов сердечники монтируют на валу, а проводники обмотки впрессовывают (заливают) в пазы магнитопровода. При этом нет необходимости в изоляции пазов сердечника. На рисунке 2 показано фото ротора с КЗ обмотками.

Рис. 2. Ротор асинхронного двигателя с КЗ обмотками

Пластины магнитопроводов таких роторов не требуют лаковой изоляции поверхностей. Они очень просты в изготовлении, что удешевляет себестоимость асинхронных электродвигателей, доля которых составляет до 90% от общего числа электромоторов.

Ротор асинхронно вращается внутри статора. Между этими деталями устанавливаются минимальные расстояния в виде воздушных зазоров. Оптимальный зазор находится в пределах от 0,5 мм до 2 мм.

В зависимости от количества используемых фаз асинхронные электродвигатели можно разделить на три типа:

  • однофазные;
  • двухфазные;
  • трёхфазные.

Они отличаются количеством и расположением обмоток статора. Модели с трехфазными обмотками отличаются высокой стабильностью работы при номинальной нагрузке. У них лучшие пусковые характеристики. Зачастую такие электродвигатели используют простую схему пуска.

Двухфазные двигатели имеют две перпендикулярно расположенных обмотки статора, на каждую из которых поступает переменный ток. Их часто используют в однофазных сетях – одну обмотку подключают напрямую к фазе, а для питания второй применяют фазосдвигающий конденсатор. Без этой детали вращение вала асинхронного электродвигателя самостоятельно не начнётся. В связи с тем, что конденсатор является неотъемлемой частью двухфазного электромотора, такие двигатели ещё называют конденсаторными.

В конструкции однофазного электродвигателя используют только одну рабочую обмотку. Для запуска вращения ротора применяют пусковую катушку индуктивности, которую через конденсатор кратковременно подключают к сети, либо замыкают накоротко. Эти маломощные моторчики используются в качестве электрических приводов некоторых бытовых приборов.

Принцип работы

Функционирование асинхронного двигателя осуществляется на основе свойства трёхфазного тока, способного создавать в обмотках статора вращающее магнитное поле. В рассматриваемых электродвигателях синхронная частота вращения электромагнитного поля связана прямо пропорциональной зависимостью с собственной частотой переменного тока.

Существует обратно пропорциональная зависимость частоты вращения от количества пар полюсов в обмотках статора. Учитывая то, что сдвиг фаз составляет 60º, зависимость частоты вращения ротора (в об/мин.) можно выразить формулой:

n1 = (f1*60) / p, где n1 – синхронная частота,  f1 – частота переменного тока, а p – количество пар полюсов.

В результате действия магнитной индукции на сердечник ротора, в нём возникнет ЭДС, которая, в свою очередь, вызывает появление электрического тока в замкнутом проводнике. Возникнет сила Ампера, под действием которой замкнутый контур начнёт вращение вдогонку за магнитным полем. В номинальном режиме работы частота вращения ротора немного отстаёт от скорости вращения создаваемого в статоре магнитного поля. При совпадении частот происходит прекращение магнитного потока, ток исчезает в обмотках ротора, вследствие чего прекращается действие силы. Как только скорость вращения вала отстанет, переменными токами магнитных полей, возобновляется действие амперовой силы.

Разницу частот вращения магнитных полей называют частотой скольжения: ns=n1–n2, а относительную величину s, характеризующую отставание, называют скольжением.

s = 100% * ( ns / n1) = 100% * (n1 – n2) / n1 , где ns – частота скольжения; n1, n2 – частоты вращений статорных и роторных магнитных полей соответственно.

С целью уменьшения гармоник ЭДС и сглаживания пульсаций момента силы, стержни короткозамкнутых витков немного скашивают. Взгляните ещё раз на рис. 2 и обратите внимание на расположение стержней, выполняющих роль обмоток ротора, относительно оси вращения.

Скольжение зависит от того, какую механическую нагрузку приложено к валу двигателя. В асинхронных электромоторах изменение параметров скольжения происходит в диапазоне от 0 до 1. Причём в режиме холостого хода набравший обороты ротор почти не испытывает активного сопротивления. S приближается к нулю.

Увеличение нагрузки способствует увеличению скольжения, которое может достигнуть единицы, в момент остановки двигателя из-за перегрузки. Такое состояние равносильно режиму короткого замыкания и может вывести устройство из строя.

Относительная величина отставания соответствующая номинальной нагрузке электрической машины называется номинальным скольжением. Для маломощных электромоторов и двигателей средней мощности этот показатель изменяется в небольших пределах – от 8% до 2%. При неподвижности ротора электродвигателя скольжение стремится к 0, а при работе на холостом ходу оно приближается к 100%.

Во время запуска электромотора его обмотки испытывают нагрузку, что приводит к резкому увеличению пусковых токов. При достижении номинальных мощностей электрические двигатели с короткозамкнутыми витками самостоятельно восстанавливают номинальную частоту ротора.

Обратите внимание на кривую крутящего момента скольжения, изображённую на рис. 3.

Рис. 3. Кривая крутящего момента скольжения

При увеличении крутящего момента коэффициент s изменяется от 1 до 0 (см. отрезок «моторная область»). Возрастает также скорость вращения вала. Если скорость вращения вала превысит номинальную частоту, то крутящий момент станет отрицательным, а двигатель перейдёт в режим генерации (отрезок «генерирующая область»). В таком режиме ротор будет испытывать магнитное сопротивление, что приведёт к торможению мотора. Колебательный процесс будет повторяться, пока не стабилизируется крутящий момент, а скольжение не приблизится к номинальному значению.

Преимущества и недостатки

Повсеместное использование асинхронных двигателей с короткозамкнутыми роторами обусловлено их неоспоримыми преимуществами:

  • стабильностью работы на оптимальных нагрузках;
  • высокой надёжностью в эксплуатации;
  • низкие эксплуатационные затраты;
  • долговечностью функционирования без обслуживания;
  • сравнительно высокими показателями КПД;
  • невысокой стоимостью, по сравнению с моделями на основе фазных роторов и с другими типами электромоторов.

Из недостатков можно отметить:

  • высокие пусковые токи;
  • чувствительность к перепадам напряжений;
  • низкие коэффициенты скольжений;
  • необходимость в применении устройств, таких как преобразователи частоты, пусковые реостаты и др., для улучшения характеристик электромотора;
  • ЭД с короткозамкнутым ротором нуждаются в дополнительных коммутационных управляющих устройствах, в случаях, когда возникает необходимость регулировать скорость.

Электродвигатели данного типа имеют приличную механическую характеристику. Несмотря на недостатки, они лидируют по показателям их применения.

Основные технические характеристики

В зависимости от класса электродвигателя, его технические характеристики меняются. В рамках данной статьи не ставится задача приведения параметров всех существующих классов двигателей. Мы остановимся на описании основных технических характеристик для электромоторов классов 56 А2 – 80 В2.

В этом небольшом промежутке на линейке моделей эелектромоторов с короткозамкнутыми роторами можно отметить следующее:

Мощность составляет от 0,18 кВт (класс 56 А2) до 2,2 кВт (класс 80 В2).

Ток при максимальном напряжении – от 0,55 А до 5А.

КПД от 66% до 83%.

Частота вращения вала для всех моделей из указанного промежутка составляет 3000 об./мин.

Технические характеристики конкретного двигателя указаны в его паспорте.

Подключение

Статорные обмотки трёхфазного АДКР можно подключать по схеме «треугольник» либо «звезда». При этом для звёздочки требуется напряжение выше, чем для треугольника.

Обратите внимание на то, что электродвигатель, подключенный разными способами к одной и той же сети, потребляет разную мощность. Поэтому нельзя подключать электромотор, рассчитанный на схему «звезда» по принципу треугольника. Но с целью уменьшения пусковых токов можно коммутировать на время пуска контакты звезды в треугольник, но тогда уменьшится и пусковой момент.

Схемы включения понятны из рисунка 4.

Рис. 4. Схемы подключения

Для подключения трёхфазного электрического двигателя к однофазному току применяют фазосдвигающие элементы: конденсаторы, резисторы. Примеры таких подключений смотрите на рисунке 5. Можно использовать как звезду, так и треугольник.

Рис. 5. Примеры схем подключений в однофазную сеть

С целью управления работой двигателя в электрическую цепь статора подключаются дополнительные устройства.

www.asutpp.ru

Устройство и принцип работы трехфазных электродвигателей

Наибольшее распространение в промышленности, сельском хозяйстве и быту среди трехфазных электродвигателей получили асинхронные электродвигателя с короткозамкнутым ротором благодаря их простоте устройства, надежности и дешевизне. Поэтому на примере именно такого электродвигателя мы и будем рассматривать их устройство и принцип работы.

Асинхронный электродвигатель состоит из двух основных частей: статора и ротора.

Статор — неподвижная часть электродвигателя. Он состоит из следующих элементов:

  • станина (корпус) которая, как правило, выполняется ребристой для лучшего охлаждения, т.к. в процессе работы сердечник статора с обмотками нагреваются. Так же станина имеет лапы для крепления электродвигателя.
  • сердечник статора — набирается из отдельных листов электротехнической стали для уменьшения потерь на вихревые токи (токи Фуко) и имеет зубчатую форму (пазы) и имеет следующий вид:

  • обмотки статора — выполняются медными проводами которые укладываются в пазы сердечника, концы обмоток для подключения к электрической сети выводятся в клемную коробку.

Ротор — вращающаяся часть электродвигателя. Ротор состоит из следующих элементов:

  • вал — выполняется из стали служит для передачи механической энергии на рабочий механизм.
  • сердечник ротора — насаживается на вал, так же как и сердечник статора выполняется из отдельных листов электротехнической стали
  • обмотка ротора — как правило имеет короткозамкнутое исполнение, часто короткозамкнутую обмотку ротора называют «беличьим колесом» из-за внешнего сходства. Короткозамкнутая обмотка ротора имеет следующий вид:

Ротор удерживается в центре статора подшипниковыми щитами.

Принцип работы электродвигателя довольно прост и основан на принципе вращающегося электромагнитного поля.

На рисунке выше представлен медный диск прикрепленный к валу на подшипнике напротив которого расположен постоянный магнит. Если начать вращать постоянный магнит то его магнитное поле пересекающее медный диск начнет так же вращаться, т.е. создастся вращающееся магнитное поле которое согласно закону электромагнитной индукции создают в медном диске токи индукции. Данные токи, протекая по диску, создают собственное электромагнитное поле, которое, в свою очередь, вступает во взаимодействие с вращающимся магнитным полем постоянных магнитов, что приводит к вращению диска.

Таким же образом работает и трехфазный электродвигатель, однако в нем вращающееся магнитное поле создается с помощью специального расположения обмоток статора, которые смещены в пространстве относительно друг друга на 120о, такое расположение при протекании по ним трехфазного тока приводит к возникновению вращающегося электромагнитного поля.

Видео воздействия вращающегося электромагнитного поля статора на металлический контур (в качестве контура в данном случае выступает обычное лезвие):

Вращающееся магнитное поле статора воздействуя на обмотку ротора приводит к возникновению в ней индукционных токов, которые протекая через обмотку ротора создают собственное электромагнитное поле, взаимодействие этих полейприводит ротор во вращение.

Так же как и магнит статор электродвигателя имеет полюса, однако в отличие от постоянного магнита полюсов в электродвигателе может быть больше двух, при этом их всегда четное количество. Количество полюсов в статоре напрямую влияет на скорость вращения магнитного поля и соответственно на скорость вращения ротора. Частота вращения магнитного поля (синхронная частота) определяется по формуле:

n=60*f/p

где: f — частота тока в станах СНГ частота тока составляет 50 Гц (Герц); p — количество пар полюсов.

Чем больше полюсов у двигателя тем меньше частота его вращения. Например, расчитаем частоту вращения электродвигателя с четырьмя полюсами:

Четыре полюса — это 2 пары полюсов, соответственно:

n=60*f/p=60*50/2=1500 об/мин

Т.е. синхронная частота вращения магнитного поля статора 1500 об/мин, при этом частота вращения ротора при этом будет немного меньше может составлять 1400-1450 об/мин.

Относительная величина отставания вращения ротора от частоты вращения магнитного поля статора называется скольжением, она выражается в процентах и определяется по формуле:

S=(n1-n2)/n1*100%

где: n1 — синхронная частота вращения, об/мин; n2 — частота вращения ротора (асинхронная частота вращения), об/мин.

Видео с описанием устройства и принципа действия трехфазного асинхронного электродвигателя с короткозамкнутым ротором:

https://rutube.ru/video/5669ad1c19a22b8cee6d794c472caa32/

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

↑ Наверх

elektroshkola.ru


Смотрите также


2012-2020 © Содержание, карта сайта.