эффективные решения для вашего бизнеса  
Дон Изолятор моб: +7 988 540 32 29
тел: (863) 219-12-79
факс: (863) 219-12-79
e-mail: doninsulator@mail.ru
гарантированная защита и надежность
Продукция Контакты Информация
Информация

Для чего используют определения


используется определение - это... Что такое используется определение?

  • ОПРЕДЕЛЕНИЕ — дефиниция (лат. defenitio ограничение) логическая операция, раскрывающая содержание понятия. Напр., обычное определение термометра указывает, что это, во первых, прибор и, во вторых, именно тот, с помощью которого измеряется температура. Важность …   Философская энциклопедия

  • ОПРЕДЕЛЕНИЕ, — ОПРЕДЕЛЕНИЕ, дефиниция (от лат. «definitio» – «предел», «граница») – логическая процедура придания строго фиксированного смысла терминам языка. Т.к. значения терминов зависят от их смыслов, то всякий раз, придавая через определение какой либо… …   Философская энциклопедия

  • Определение свободных произведений культуры — Определение свободных произведений культуры, логотип …   Википедия

  • Определение рыночной цены при отсутствии на рынке сделок по идентичным (однородным) товарам — при отсутствии на соответствующем рынке товаров, работ или услуг сделок по идентичным (однородным) товарам, работам, услугам или из за отсутствия предложения на этом рынке таких товаров, работ или услуг, а также при невозможности определения… …   Энциклопедический словарь-справочник руководителя предприятия

  • Определение Open Source — (англ. Open Source Definition, OSD) используется организацией Open Source Initiative для определения степени соответствия лицензии на программное обеспечение стандартам Открытого программного обеспечения (Открытое ПО). Основываются на… …   Википедия

  • определение твердости по склероскопу — определение твердости по Шору Динамические испытания на твердость, при которых используется калиброванный прибор. Стандартный боек с алмазным наконечником падает с фиксированной высоты на поверхность испытуемого материала. Высота отскока бойка… …   Справочник технического переводчика

  • Определение понятий — технико юридический прием, к которому прибегает законодатель, устанавливая содержание конструируемых им правовых норм. Потребность определения используемых в законе понятий обусловлено чаще всего тем, что одно и то же понятие (термин),… …   Элементарные начала общей теории права

  • Определение (объяснение значения) — Определение, дефиниция (от лат. definitio), указание или объяснение значения (смысла) термина и (или) объёма (содержания) выражаемого данным термином понятия; этот термин (понятие) называется определяемым (лат. definiendum, сокращенно Dfd), а… …   Большая советская энциклопедия

  • определение ценности услуги — (ITIL Service Strategy) Измерение полных затрат на предоставление ИТ услуги и полной ценности этой ИТ услуги для бизнеса. Определение ценности услуги используется для того, чтобы помочь бизнесу и поставщику ИТ услуг прийти к соглашению о ценности …   Справочник технического переводчика

  • определение —         ОПРЕДЕЛЕНИЕ (дефиниция) процедура придания точного смысла языковому выражению (например: «Ромб это четырехугольник, у которого все стороны равны»), О. необходимо отличать от сходных с ними приемов описания, характеристики объектов,… …   Энциклопедия эпистемологии и философии науки

  • Определение остроты зрения — численное выражение способности глаза воспринимать раздельно две точки, расположенные друг от друга на определенном расстоянии. Условно принято считать, что глаз с нормальной остротой зрения способен увидеть раздельно две далекие точки, если… …   Википедия

science_en_ru.academic.ru

3. Определение понятий. Способы определения понятий

Для распознавания объекта необязательно проверять у него все существенные свойства, достаточно лишь некоторых. Этим пользуются, когда понятию дают определение.

Определить понятие – это значит дать способ, позволяющий отделить объекты, охватываемые данным понятием, от всех других объектов изучения в зависимости от присущих им существенных свойств. Таким образом, определение (лат. «definitio» – «определение») понятий – логическая операция, в процессе которой раскрывается содержание понятия.

Определение понятий – это логическая операция, с помощью которой указываются существенные (отличительные) свойства объекта изучения, достаточные для распознавания этого объекта, т.е. в процессе которой раскрывается содержание понятия либо устанавливается значение термина.

Определение понятия позволяет отличать определяемые объекты от других объектов. Так, например, определение понятия «прямоугольный треугольник» позволяет отличить его от других треугольников.

По способу раскрытия свойств определяемого понятия различают неявные и явные определения. К неявным определениям относятся невербальные определения, к явным - вербальные определения (лат. слово «verbalis» означает «словесный»).

Невербальное определение – это определение значения понятия путём непосредственной демонстрации предметов или указания контекста, в котором применяется то или иное понятие.

Невербальные определения понятий используются в начальном курсе математики, так как младшие школьники обладают преимущественно наглядным мышлением, и именно наглядные представления о математических понятиях играют для них основную роль в обучении математике.

Невербальные определения разделяются на остенсивные (лат. слово «ostendere» – «показывать») и контекстуальные определения.

Остенсивное определение – определение, в котором содержание нового понятия раскрывается путём демонстрации объектов (указания на объекты).

Например.

  1. Понятия «треугольник», «круг» «квадрат», «прямоугольник» в дошкольном образовательном учреждении определяются с помощью демонстрации соответствующих моделей фигур.

  2. Таким же способом показа можно определить в начальном курсе математики понятия «равенство» и «неравенство».

3 · 5 > 3 · 4 8 · 7 = 56

15 – 4 < 15 5 · 6 = 6 · 5

18+7 >18 17 – 5 = 8 + 4

Это неравенства. Это равенства.

При ознакомлении дошкольников с новыми математическими понятиями в основном используются остенсивные определения.

Однако это не исключает в дальнейшем изучения их свойств, то есть формирования у детей представлений об объёме и содержании понятий, первоначально определенных остенсивно.

Контекстуальное определение – определение, в котором содержание нового понятия раскрывается через отрывок текста, через контекст, через анализ конкретной ситуации, описывающей смысл водимого понятия.

Например.

  1. Понятия «больше», «меньше», «равно» в начальном курсе математики определяются с помощью указания контекста (больше на 3 – это значит столько же и ещё 3).

  2. Примером контекстуального определения может быть определение уравнения и его решения, которые даются во 2 классе. В учебнике математики после записи  + 6 = 15 и перечня чисел 0, 5, 9, 10 идет текст: «К какому числу надо прибавить 6, чтобы получилось 15? Обозначим число неизвестное число буквой х (икс): х + 6 = 15 – это уравнение. Решить уравнение – значит найти неизвестное число. В данном уравнении неизвестное число равно 9, т.к. 9+6=15. Объясни, почему числа 0,5 и 10 не подходят».

Из приведенного текста следует, что уравнение – это равенство, в котором есть неизвестное число. Оно может быть обозначено буквой х и это число надо найти. Кроме того, из этого текста следует, что решение уравнения – это число, которое при подстановке вместо х обращает уравнение в верное равенство.

Иногда встречаются определения, сочетающие контекст и показ.

Например.

  1. Нарисовав прямые углы, имеющие разное расположение на плоскости, и сделав надпись: «Это – прямые углы», учитель знакомит младших школьников с понятием «прямой угол».

  2. Примером такого определения может служить следующее определение прямоугольника. На рисунке дается изображение четырехугольников и приведен текст: «У этих четырехугольников все углы прямые». Под рисунком написано: «Это – прямоугольники».

Таким образом, на начальном этапе обучения учащихся математике чаще всего используются невербальные определения понятий, а именно, остенсивные, контекстуальные и их сочетание.

Необходимо отметить, что невербальные определения понятий характеризуются некоторой незавершенностью. Действительно, определение понятий путем показа или через контекст не всегда указывает на свойства, существенные (отличительные) для данных понятий. Такие определения только связывают новые термины (понятия) с некоторыми объектами или предметами. Поэтому после невербальных определений необходимо дальнейшее уточнение свойств рассмотренных понятий и изучение строгих определений математических понятий.

В средних и старших классах, в связи с развитием языка и накоплением достаточного запаса математических понятий, на смену невербальным определениям приходят вербальные определения понятий. При этом все большую роль начинают играть не наглядные представления о математических понятиях, а их строгие определения. Они основываются на свойствах, которыми обладают определяемые понятия.

Вербальное определение – перечисление существенных (отличительных) свойств данного понятия, сведенных в связное предложение.

В начальном курсе математики изучаемые понятия располагают в таком порядке, чтобы каждое последующее понятие можно было определить, опираясь на ранее изученные их свойства или ранее изученные понятия. Поэтому некоторые математические понятия не определяются (или косвенно определяются через аксиомы). Например, понятия: «множество», «точка», «прямая», «плоскость». Они являются основными, базисными или неопределяемыми понятиями математики. Определение понятий можно рассматривать в виде процесса сведения одного понятия к другому, ранее изученному, и, в конечном счете, к одному из основных понятий.

Например, квадрат есть особый ромб, ромб – особый параллелограмм, параллелограмм – особый четырехугольник, четырехугольник – особый многоугольник, многоугольник – особая геометрическая фигура, геометрическая фигура – точечное множество. Таким образом, мы дошли до основных неопределяемых понятий математики: «точка» и «множество».

В этой последовательности понятий каждое понятие, начиная со второго, является родовым понятием для предыдущего понятия, т.е. объёмы этих понятий находятся между собой в последовательном отношении включения:

Va Vв  Vc  Vd  Ve  Vf  Vq, где а: «квадрат», в: «ромб»,

с: «параллелограмм», d: «четырехугольник», e: «многоугольник»,

f: «геометрическая фигура», q: «точечное множество». Наглядно объемы этих понятий можно изображать и на диаграмме Эйлера-Венна (рис. 7).

Va V в Vc V d Ve Vf Vq

Рис. 7

Рассмотрим основные способы вербальных определений понятий.

  1. Определение через род и видовое отличие – самый распространенный вид явных определений.

Например, определение понятия «квадрат».

«Квадратом называется прямоугольник, у которого все стороны равны».

Проанализируем структуру этого определения. Сначала указано определяемое понятие - «квадрат», а затем приведено определяющее понятие, в котором можно выделить две части: 1) понятие «прямоугольник», которое является родовым по отношению к понятию «квадрат»; 2) свойство «иметь все равные стороны», которое позволяет выделить из всевозможных прямоугольников один вид – квадрат, поэтому это свойство называют видовым отличием.

Видовым отличием называются свойства (одно или несколько), которые позволяют выделить определяемое понятие из объема родового понятия.

Следует иметь в виду, что понятия рода и вида относительны. Так, «прямоугольник» – это родовое к понятию «квадрат», но видовое по отношению к понятию «четырехугольник».

Кроме того, для одного понятия может существовать несколько родовых. Например, для квадрата родовыми являются ромб, четырехугольник, многоугольник, геометрическая фигура. В определении через род и видовое отличие для определяемого понятия принято называть ближайшее родовое понятие.

Схематично структуру определений через род и видовое отличие можно представить следующим образом (рис. 8).

Определяемое понятие

=

Родовое понятие

+

Видовое отличие



Определяющее понятие

Рис. 8

Очевидно, что определяемое понятие и определяющее понятие должны быть тождественны, т.е. их объёмы должны совпадать.

По данной схеме можно строить определения понятий не только в математике, но и в других науках.

Следующие способы определения понятий являются частными случаями определения через род и видовое отличие.

  1. Генетическое или конструктивное определение, т.е. определение, в котором видовое отличие определяемого понятия указывает на его происхождение или способ образования, построения (греч. слово «denesis» – «происхождение», лат. слово «constructio» – «построение»).

Например.

1. Определение понятия «угол».

«Углом называется фигура, образованная двумя углами, исходящими из одной точки». В этом примере понятие «фигура» является родовым, а способ образования этой фигуры – «образована двумя лучами, исходящими из одной точки» - является видовым отличием.

2. Определение понятия «треугольник».

«Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех попарно соединяющих их отрезков».

В этом определении указано родовое понятие по отношению к треугольнику – «фигура», а затем видовое отличие, которое раскрывает способ построения фигуры, являющейся треугольником: взять три точки, не лежащие на одной прямой, и соединить каждую их пару отрезком.

  1. Индуктивное определение или определение понятия с использованием формулы, позволяющей сформулировать общее отличительное свойство данного понятия (лат. слово «inductio» – «наведение» на рассуждение от частного к общему).

Например, определение понятия «функция прямой пропорциональности».

«Функцией прямой пропорциональности называется функция вида «y=kx, где xR, k≠0». В этом примере понятие «функция» - родовое понятие, а формула «y=kx, где xR, k≠0» - видовое отличие понятия «функция прямой пропорциональности» от других видов функций.

Рассмотренные способы определения понятий позволяют наглядно изобразить виды определения понятий на следующей схеме (рис. 9).

Определение понятий

Неявное определение Явное определение

Невербальное определение Вербальное определение

Остенсивное Контекстуальное Определение понятия «через

определение определение род и видовое отличие»

Остенсивно-контекстуальное Генетическое или Индуктивное

определение конструктивное определение

Рис. 9

Основные правила явного определения.

Определения понятий не доказывают и не опровергают. Как оценивают правильность тех или иных определений? Имеются определённые правила и требования, которые необходимо выполнять, формулируя определение данного понятия. Рассмотрим основные из них.

1. Определение должно быть соразмерным. Это означает, что объемы определяемого и определяющего понятий должны совпадать. Если это правило нарушается, в определении возникают логические ошибки: определение оказывается слишком узким (недостаточным) или слишком широким (избыточным). В первом случае определяющее понятие будет меньшим по объёму, чем определяемое понятие, а во втором – большим.

Например, определения «Прямоугольником называется четырехуголь-ник, имеющий прямой угол», «Глаз – это орган зрения человека» - узкое, а определения «Прямоугольником называется четырехугольник, у которого все углы прямые и смежные стороны равны», «Костёр – это источник тепла», «Овощи и фрукты – это источники витаминов» - широкое. Также несоразмерно такое определение квадрата: «Квадратом называется четырехугольник, у которого все стороны равны». Действительно, объём определяемого понятия – множество квадратов, а объём определяющего понятия – множество четырехугольников, все стороны которых равны, а это множество ромбов. Но не всякий ромб есть квадрат, т.е. объёмы определяемого и определяющего понятия не совпадают.

2. Определения не должны содержать «порочного круга». Это означает, что нельзя определять одно понятие через другое, а это другое понятие – через первое.

Например, если определить окружность как границу круга, а круг как часть плоскости, ограниченную окружностью, то мы будем иметь «порочный круг» в определениях данных понятий; если определить перпендикулярные прямые как прямые, которые при пересечении образуют прямые углы, а прямые углы как углы, которые образуются при пересечении перпендикулярных прямых, то мы видим, что одно понятие определяется через другое и наоборот.

3. Определение не должно быть тавтологией, т.е. нельзя понятие определять через само себя, изменяя только (и то зачастую незначительно) словесную форму понятия.

Например, определения: «Перпендикулярные прямые – это прямые, которые перпендикулярны», «Равные треугольники – это треугольники, которые равны», «Касательная к окружности – это прямая, которая касается окружности», «Прямой угол – это угол в 90°», «Сложением называется действие, при котором числа складываются», «Скрипучая дверь – это дверь, которая скрипит», «Холодильник – это место, где всегда холодно» - содержат тавтологию. (Понятие определяется через само себя.)

4. Определение должно содержать указание на ближайшее родовое понятие. Нарушение этого правила приводит к различным ошибкам. Так, учащиеся, формулируя определение, иногда не указывают родовое понятие. Например, определение квадрата: «Это когда все стороны равны». Другой тип ошибок связан с тем, что в определении указывается не ближайшее родовое понятие, а более широкое родовое понятие. Например, определение того же квадрата: «Квадратом называется четырехугольник, у которого все стороны равны».

5. Определение по возможности не должно быть отрицательным. Это означает, что следует избегать таких определений, в которых видовое отличие выступает в качестве отрицательного. Вместе с тем, в математике все же используют такие определения, в частности, если в них указываются свойства, не принадлежащие определяемому понятию. Например, определение «Иррациональное число – число, которое нельзя представить в виде , гдеp и q – целые числа и q≠0».

Последовательность действий, которую мы должны соблюдать, если хотим воспроизвести определение знакомого понятия или построить определение нового: назвать определяемое понятия (термин); указать ближайшее родовое (по отношению к определяемому) понятие; перечислить свойства, выделяющие определяемые объекты из объёма родового, т.е. сформулировать видовое отличие; проверить, выполнены ли правила определения понятия.

Знание вышеперечисленных правил определения понятий даcт возможность учителю более строго относиться к определениям, которые даёт он сам учащимся на уроках, и к определениям, которые дают учащиеся в своих ответах.

studfiles.net

ОПРЕДЕЛЕНИЕ, - это... Что такое ОПРЕДЕЛЕНИЕ,?

ОПРЕДЕЛЕНИЕ, ОПРЕДЕЛЕНИЕ, дефиниция (от лат. «definitio» – «предел», «граница») – логическая процедура придания строго фиксированного смысла терминам языка. Т.к. значения терминов зависят от их смыслов, то всякий раз, придавая через определение какой-либо смысл (содержание) языковому выражению, одновременно с этим указывают и его значение (экстенсионал), т.е. в некотором универсуме очерчивается (определяется) граница того класса предметов, которые подпадут под него. Иначе говоря, каждое определение задает не только смысл термина, но и его значение.     В повседневной разговорной практике словарный запас языка обычно используется на интуитивном уровне. Подобная ситуация в силу наличия у людей различной интуиции часто ведет к взаимному недопониманию и даже недоразумениям. Поэтому имеется насущная потребность в уточнении значений терминов. Именно эту функцию и выполняют определения. Напр., в толковых и энциклопедических словарях каждый термин посредством его определения получает некую однозначную стандартную трактовку.     Особенно велико значение четкой и однозначной терминологии в научных исследованиях, где вопросу об определениях уделяется пристальное внимание. Определения широко используются при доказательстве теоретических положений, установлении отношений между различными теориями и т.д. При этом надо учитывать, что для решения различных научных задач одному и тому же термину могут ставиться в соответствие различные смыслы. Так, в повседневной практике смыслы терминов часто строго фиксируются только на момент ведения беседы и не более того. И даже в сфере науки, где терминам стремятся придать устойчивые, постоянные смыслы, нередко возникают ситуации, которые требуют уточнения, переопределения уже ранее определенных терминов. Последнее является следствием постоянного развития и уточнения научного знания, в соответствии с чем трансформируются и определения научных терминов.

    Всякое определение, независимо от целей и способов его введения, представляет собой констатацию наличия соответствия между языковым выражением и его смыслом. Такого рода констатации всегда являются конвенциями (соглашениями) об употреблении некоторого термина. Поэтому определения не являются предложениями и им нельзя приписывать свойства «быть истинным» или «быть ложным». Можно лишь говорить, что то или иное определение удачно или нет, достигает или не достигает поставленных целей.

    Определения можно разделить на несколько видов. Одним из наиболее глобальных членений определений является их подразделение на аналитические и синтетические. Это деление является следствием того, что определения выполняют в познании две основные функции. Посредством любого определения: 1) либо вводится в систему знания новый термин, 2) либо раскрывается точный смысл ранее введенного термина. В первом случае говорят, что определение является синтетическим, во втором же случае про определение говорят, что оно является аналитическим.

    Другим важным делением является их подразделение на явные и неявные. Явными называются определения, задаваемые лингвистической конструкцией вида: A ↔ B. Каждая такая конструкция содержит четыре части: A называется определяемой частью, B – определяющей частью, знак «↔» указывает, что выражение A означает то же самое, что и выражение B. В случаях конкретных явных определений вместо знака «↔» пишется либо знак «= Df» (читается: «равно по дефиниции»), либо знак «≡ Df» (читается: «эквивалентно по дефиниции»). Первый знак употребляется в том случае, когда определяемая часть A является именной конструкцией, а второй в том случае, когда A – высказывательная конструкция. В определяемой части A, которое может быть сложным выражением, всегда присутствует некоторый термин, который и является целью определения. Этот термин называется определяемым термином. В явных определениях определяемым термином является та минимальная часть определяемого выражения A, которая не встречается в определяющей части.

    Явные определения делятся по разным основаниям на несколько видов. В зависимости от того, к какой языковой категории относится определяемый термин, различают следующие виды явных определений: определение имени, т.е. сингулярного термина; универсалии>, т.е. обобщающего термина; высказывательной формы, в частности, предикатора; предметной функции. Частным случаем определения имени являются определение через гипостазирование, с помощью которого раскрывается содержание собственных имен для свойств, отношений и функций, напр., таких, как «теплопроводность», «краснота», а также определение через абстракцию. Примером первого определения является выражение: «отцовство = DfiR∀x∀y(R(x, у) ≡ (Мужчина (x) & Родитель (x, y))», задающее смысл абстрактного имени «отцовство». Примером второго определения является выражение: «вес = Dfif∀x∀y (Уравнивают весы(x, y) ≡ f(x) = f(y)», которое выражает мысль о том, что термин «вес» следует понимать как знак той самой функциональной характеристики, соответствующие величины которой для любых x и y будут равны тогда и только тогда, когда эти предметы уравновешивают чаши весов.     В зависимости от характера определяющей части различают: генетические определения, в которых в определяющей части указывается на способ порождения (образования) предметов; целевые определения, в которых указывается на то, как используется предмет, какие функции он выполняет, для достижения каких целей он применяется; квалифицирующие, в которых фиксируются, что предмет представляет собой, т.е. фиксируются какие-то его структурные особенности, атрибуты, а также особенности внешнего вида; перечислительные определения, в которых просто перечисляются те предметы, которые подпадают под определяемый термин; операциональные определения, в которых указывают на некоторую проверочную процедуру, осуществляя которую можно узнать, подпадает ли произвольный предмет из рода U под данный термин или нет. Последнего рода определения вводят в теорию т.н. диспозиционные предикаторы, обозначающие некоторые скрытые качества предметов, наличие которых приводит к существованию у них некоторой предрасположенности (диспозиции) реагировать определенным образом на внешнее воздействие. Такими предикаторами являются, напр., «растворимый», «электропроводный», «хрупкий» и многие другие. Операциональные определения широко используются в физике для задания физических величин.     Явные определения обладают одним важным свойством – определяемые и определяющие части могут в любом контексте замещаться друг на друга, т.е. для них верно следующее правило:          называемое правилом замены по определению (дефиниции). Запись K(C:D) означает, что в контексте K(C) некоторые или все вхождения выражения C меняются на D.     Неявные определения – это определения, задаваемые лингвистической конструкцией вида:

    A есть то, что удовлетворяет условиям: B1, В2, ..., Βn.

    Для всех неявных определений имеют место следующие особенности: 1) условия B1, В2, ..., Βn представляют собой предложения, 2) определяемый термин – это то минимальное выражение, которое входит в каждое определяющее условие B1, В2, ..., Βn, что не влечет тем не менее тавтологичности дефиниций, т.к. в дефинициях этого сорта определяющая часть (условия B1, В2, ..., Βn) не приравнивается выражению A; 3) в силу сказанного для неявных определений не действует правило замены по дефиниции.     Неявные определения делятся на индуктивные, рекурсивные и аксиоматические. Примером индуктивного определения является определение натурального числа: 1) 0 есть натуральное число. 2) Если n – натуральное число, то nʹ – натуральное число. 3) Ничто иное не есть натуральное число. Суть таких определений состоит в следующем. Если нам требуется задать класс предметов, подпадающих под некоторый термин, то мы прямо объявляем некоторые предметы элементами этого класса. Данный пункт определения называется базисом индукции. После этого все остальные предметы, входящие в класс, порождаются с помощью некоторых процедур. Такой пункт определения называется индуктивным шагом. 3-й пункт определения ограничивает класс натуральных чисел только теми объектами, которые задаются первыми двумя пунктами. В общем случае в пункте, задающем базис индукции, может указываться не один предмет, а много предметов, и даже бесконечное их число. С другой стороны, в пунктах, задающих индуктивные шаги, может использоваться не одна порождающая операция, как это имеет место в приведенном примере, а несколько операций. Именно с такой ситуацией мы сталкиваемся в индуктивном определении формул логики высказываний. Здесь в базисе индукции любая пропозициональная переменная, а их число бесконечно, объявляется формулой. Порождающими же процедурами в этом случае являются процедуры применения логических констант ¬, &, ∨, ..., ⊃ к ранее построенным формулам.     Рекурсивные определения похожи на индуктивные, но применяются для задания не классов предметов, а некоторых функций. Примером рекурсивного определения является следующее определение сложения: 1) x + 0 = х. 2) x + yʹ = (x + y)ʹ. Суть этого определения такова. Понимание некоторой функции состоит в знании ее значений для определенных значений аргументов. Именно это и позволяет установить рекурсивное определение сложения. Действительно, 1-й пункт, который называется базисом рекурсии, говорит, что значение функции x + y равно x, если y = 0. 2-й пункт, который называется рекурсией, говорит, что если мы хотим вычислить значение x + yʹ, где yʹ – число, следующее за y, то надо вычислить для этого y, чему равно x + y, и взять число, следующее за x + y.     Еще одна разновидность неявных определений – аксиоматические, посредством которых некоторый термин определяется путем указания той совокупности аксиом, в которой он содержится. С этой точки зрения аксиомы любой системы являются синтетическими определениями тех терминов, которые в них входят.     Часто говорят о некоторой контекстной зависимости определяемого термина. При этом сам термин «контекстная зависимость» понимается в двух различных смыслах. С одной стороны, речь идет о получении некоторого неявного знания об интересующем нас термине из рассмотрения некоторого конкретного контекста, в состав которого он входит. В этом случае понимание смысла контекста позволяет предположить и возможное значение соответствующего термина. С другой стороны, речь вдет об определении термина посредством определения всех контекстов, в состав которых он входит. Чтобы задать эти контексты, используют соответствующий метаязык. В первом случае говорят об определении через контекст. Во втором – о контекстуальном определении. Все определения делятся также на реальные и номинальные. При этом определение считается реальным, если значением определяемого термина являются реально (материально) существующие предметы или их характеристики (свойства и отношения). Определение считается номинальным (от лат. nomen – название, имя), если значением определяемого термина являются предметы реально (материально) не существующие, а также их характеристики.     Почти все определения относятся к числу родо-видовых, т.е. к определениям через указание на род и видовое отличие, т.к. при формальной записи определений почти любая дефиниция содержит некоторые переменные, пробегающие по какому-то универсуму. Последний как раз и является тем родом, внутри которого с помощью видового отличия выделяются определяемые объекты. Однако среди определений имеются и такие, которые нельзя отнести к родо-видовым. Это так называемые фундаментальные индуктивные определения. Дело заключается в том, что характеристика некоторого определения как родо-видового предполагает, что род уже имеется и потому остается только с помощью видового отличия в этом роде выделить класс определяемых предметов. Однако фундаментальные индуктивные определения не предполагают никакого заранее данного универсума, напротив, они сами строят универсум рассуждения. Примером фундаментального определения является выше рассмотренное определение натурального числа.     К определениям предъявляют различного рода требования, соблюдение которых гарантирует корректность этой логической операции. Они распадаются на требования общего характера, которые применяются ко всем определениям, и требования, которые должны выполняться для отдельных их видов.     Всякое определение должно быть ясным и четким. Это означает, во-первых, что термины, посредством которых разъясняется смысл определяемого термина, сами должны быть осмысленными выражениями. Если смыслы этих терминов не ясны, не понятны, то определение не достигает основной своей познавательной цели. Во-вторых, это означает, что в определении надо указывать лишь то, что необходимо и достаточно для задания смысла термина, т.е. в определении не должно быть ничего лишнего.

    Требование ясности и четкости определений заставляет нас одни термины определять посредством других, а эти последние в свою очередь определять через некоторые иные термины. В науке это приводит к построению системы взаимосвязанных определений. К этим совокупностям определений предъявляется требование – они не должны содержать порочного круга, т.е. не должно возникать ситуаций, когда термин B, посредством которого определяется термин A, в конечном итоге сам определяется через термин A.

    К явным определениям предъявляется требование, состоящее в том, что определяемый термин из определяемой части A не должен встречаться в определяющей части B. Если явное определение таким свойством не обладает, то оно считается ошибочным. Про такое определение говорят, что оно является тавтологичным, т.е. определяет то же через то же, а тем самым не несет никакой новой информации об употреблении терминов. Является тавтологичным, напр., явное определение множества как совокупности любых предметов, т.к. определяемый термин «множество» входит в определяющую часть, где слово «совокупность» есть просто его синоним.     Еще одним требованием является требование соразмерности, т.е. класс предметов, который традиционно считается подпадающим под определяемый термин, должен совпасть с тем классом, который задается определяющей частью. Для всех явных определений при их формальной записи на языке, скажем, исчисления предикатов должны выполняться также следующие требования согласованности: 1) свободные переменные, входящие в A и B, должны быть одинаковыми, 2) должны совпадать типы этих переменных (напр., одинаковые предикатные переменные должны быть и одинаковой местности), 3) тип выражения A должен совпадать с типом выражения B, т.е. если A – имя, то и B должно быть именем, если A – высказывательная форма, то и B должно быть высказывательной формой и т.д.

    Литература:     Горский Д.П. Определение. М., 1974;

    Попа К. Теория определения. М., 1976;     Бочаров В. Α., Маркин В.И. Основы логики. 1994.     >     

Новая философская энциклопедия: В 4 тт. М.: Мысль. Под редакцией В. С. Стёпина. 2001.

.

dic.academic.ru

Кондуктометр. Для чего нужен, как выбрать?!

Понятие кондуктометрии происходит от английского слова conductivity — что означает «электропроводность». И действительно, кондуктометрия - это совокупность множества электрохимических методов анализа, проводимых на основании измерений электропроводности растворов. Кондуктометрия, как способ, используется для определения концентрации растворов солей, кислот, оснований, для определения их электропроводимости, а также для контроля состава некоторых, используемых в промышленности, растворов.

Кондуктометр – это высокоточный измерительный прибор, который предназначается для определения электропроводности различных электролитов. Электролитами могут служить: водные и неводные растворы, расплавы, коллоидные системы (относительно крупные, по сравнению с молекулами, частицы вещества, находящиеся во взвешенном состоянии в растворе) и, даже, твёрдые вещества. Кондуктометрический анализ основывается на выявлении изменений концентрации растворенного вещества или химического состава среды в межэлектродном пространстве; Такой анализ не связан с потенциалом электрода, который обычно приближен к равновесному значению. Таким образом, исследования осуществляются посредством метода кондуктометрии – электрохимическим аналитическим методом, который основан на измерениях электрической проводимости растворов.

Кондуктометр применяется при:

- оценке качества дистиллированной воды;

- оценке засоления почв;

- кондуктометрическом титровании - это постепенное прибавление к анализируемому раствору (например, щелочи ) контролируемого количества реагента (например, кислоты).

- определении критической концентрации мицеллообразования (ККМ)

В кондуктометрии используются как прямые, так и косвенные аналитические методы с применением токов высокой и низкой частоты как постоянных, так и переменных.

При выборе кондуктометров важными являются только две характеристики:

- чувствительность измерений

- наличие термической компенсации.

Чувствительность хорошего кондуктометра характеризуется дискретностью измерения в ± 0,1 мкСм/см. Такая чувствительность делает прибор универсальным, поскольку позволяет проводить не только прямые кондуктометрические измерения, но и применять прибор для кондуктометрического титрования.

Все кондуктометры можно разделить на три группы:

- не имеющие термическую компенсацию;

- обладающие термокомпенсацией в 2% на градус;

- имеющие возможность произвольного выбора термокоэффициента.

Очевидно, что приборы второго и третьего типа обладают преимуществом перед приборами первого типа, поскольку температура оказывает существенное влияние на величину измеряемой удельной электропроводности. Однако, возможности термокомпенсации не безграничны. При слишком большом отклонении температуры анализируемого раствора от нормальной температуры, показания прибора не смогут быть откорректированы с удовлетворительной точностью. Поэтому, если у вас есть возможность приобрести кондуктометр третьего типа, то сделайте это не раздумывая. С этим прибором, вероятность возникновения ошибки измерения будет стремиться к нулю.

www.td-anion.ru


Смотрите также


2012-2020 © Содержание, карта сайта.