эффективные решения для вашего бизнеса  
Дон Изолятор моб: +7 988 540 32 29
тел: (863) 219-12-79
факс: (863) 219-12-79
e-mail: [email protected]
гарантированная защита и надежность
Продукция Контакты Информация
Информация

Драйвер 12в своими руками для светодиодной ленты


Схемотехника блоков питания для светодиодных лент и не только

Светодиоды заменяют таким типы источников света, такие как люминесцентные лампы и лампы накаливания. Практически в каждом доме уже есть светодиодные лампы, они потребляют гораздо меньше двух своих предшественников (до 10 раз меньше чем лампы накаливания и от 2 до 5 раз меньше, чем КЛЛ или энергосберегающие люминесцентные лампы). В ситуациях, когда необходим длинный источник света, или нужно организовать подсветку сложной формы в ход идёт светодиодная лента.

Led лента идеальна для целого ряда ситуаций, главное её преимущество перед отдельными светодиодами и светодиодными матрицами являются источники питания. Их легче найти в продаже почти в любом магазине электротоваров, в отличие от драйверов для мощных светодиодов, к тому же подбор блока питания осуществляется только по потребляемой мощности, т.к. подавляющее большинство светодиодных лент имеют напряжение питания в 12 Вольт.

В то время как для мощных светодиодов и модулей при выборе источника питания нужно искать именно источник тока с требуемой мощностью и номинальным током, т.е. учитывать 2 параметра, что усложняет подбор.

В этой статье рассмотрены типовые схемы блоков питания и их узлы, а также советы по их ремонту для начинающих радиолюбителей и электриков.

Типы и требования к источникам питания для светодиодных лент и 12 В led ламп

Основное требование к источнику питания как для светодиодов, так и для светодиодных лент – качественная стабилизация напряжения/тока, вне зависимости от скачков сетевого напряжения, а также низкие выходные пульсации.

По типу исполнения блоки питания для LED продукции различают:

  • Герметичные. Они сложнее в ремонте, корпус не всегда поддаётся аккуратной разборке, а внутри и вовсе может быть залит герметиком или компаундом.

  • Негерметичные, для применения в помещении. Лучше поддаются ремонту, т.к. плата изымается после откручивания нескольких винтов.

По типу охлаждения:

  • Пассивное воздушное. Блок питания охлаждается за счёт естественной конвекции воздуха через перфорацию его корпуса. Недостаток – невозможность достигнуть высоких мощностей сохранив массогабаритные показатели;

  • Активное воздушное. Блок питания охлаждается с помощью кулера (небольшого вентилятора, как устанавливают на системных блоках ПК). Такой тип охлаждения позволяет достичь большей мощности при аналогичных размерах с пассивным блоком питания.

Схемы блоков питания для светодиодных лент

Стоит понимать, что нет в электронике такого понятия как «блок питания для светодиодной ленты», в принципе к любому устройству подойдёт любой блок питания с подходящим напряжением и током большим чем потребляемый прибором. Это значит, что информация описанная ниже применима к практически любым блокам питания.

Однако в обиходе проще говорить о блоке питания по его предназначению для конкретного устройства.

Общая структура импульсного блока питания

Для питания светодиодных лент и другой техники последние десятилетия применяются импульсные блоки питания (ИБП). Они отличаются от трансформаторных тем, что работают не на частоте питающего напряжения (50 Гц), а на высоких частотах (десятки и сотни килогерц).

Поэтому для его работы нужен генератор высокой частоты, в дешевых и рассчитанных на малые токи (единицы ампер) блоках питания часто встречается автогенераторная схема, она применяется в:

  • электронных трансформаторах;

  • электронных балластах для люминесцентных ламп;

  • зарядных устройствах для мобильного телефона;

  • дешевых ИБП для светодиодных лент (10-20 вт) и других устройствах.

Схему подобного блока питания можно увидеть на рисунке (для увеличения нажмите на картинку):

Его структура следующая:

1. Голубым цветом выделен диодный мост, стоящий на входе блока питания он выпрямляет входное переменное напряжение, для питания следующих узлов постоянным напряжением величиной 220*1.41=310 В. В случае поломки – проверьте наличие и величину напряжения ДО моста и ПОСЛЕ него, если оно отсутствует – потребуется замена диодов или моста, если он собран в отельном корпусе.

На схеме не указан, но по линии 220 В может присутствовать предохранитель или низкоомный резистор, прежде чем приступать к ремонту проверьте его целостность.

2. Коричневым обведен фильтр пульсаций, его главным элементом является C4 – электролитический конденсатор. Его ёмкость зависит от того, насколько сэкономил производитель, обычно до 220 мкФ на 400 Вольт. L1 – фильтр пульсаций и электромагнитных помех, которые возникают при работе импульсного блока питания. В большинстве дешевых блоков питания он отсутствует.

Частая проблема фильтра – высыхание, взрыв или вздутие электролитического конденсатора, приводит к некачественной работе всего импульсного блока питания в целом или его полной неработоспособности. Заменить его можно таким же и большей ёмкости, но подходящим по размеру.

3. Зеленым цветом выделена силовая часть VT1 силовой транзистор, в данном случае полевой, но может быть и биполярный. T1 – импульсный трансформатор с тремя обмотками: первичной, вторичной и базовой.

Третья обмотка необходима для генерации высокочастотных колебаний – если интересен принцип работы автогенераторного блока питания лучше прочитать книги Моина, Зиновьева и другие учебники по источникам питания импульсного типа.

Импульсные трансформаторы гораздо меньше по габаритам, чем сетевые, опять же из-за работы на высоких частотах и выполнены не из железа, а из феррита. Чаще всего выходит из строя силовой ключ.

Прозвоните транзистор мультиметром в режиме проверки диодов, и вы сразу обнаружите его пробой или обрыв. Остальные элементы – это обвязка этого узла, по отдельности редко выходит из строя, в основном вслед за силовым транзистором. Однако всегда стоит убедиться в соответствии номинальным значениям резисторов и конденсаторов.

Диоды в обвязке трансформатора VD7 и VD5 выполняют роль снаббера защищая цепи от всплесков противо-ЭДС, в моменты переключения транзистора. Являются тоже довольно нагруженным и ответственным узлом.

4. Красным цветом выделена цепочка обратной связи по напряжению на базе регулируемого стабилитрона TL431 и их аналогов (любые буквы в обозначении с цифрами «431»). Дополнительная информация про TL431: Легендарные аналоговые микросхемы

В состав ОС включена оптопара U1, с её помощью в силовую часть автогенератора поступает сигнал с выхода и поддерживается стабильное выходное напряжение. В выходной части может отсутствовать напряжение из-за обрыва диода VD8, часто это сборка Шоттки, подлежит замене. Также часто вызывает проблемы вздутый электролитический конденсатор C10.

Как вы видите всё работает с гораздо меньшим количеством элементов, надёжность соответствующая…

Более дорогие и блоки питания

Схемы, которые вы увидите ниже часто встречаются в блоках питания для светодиодных лент, DVD-проигрывателей, магнитол и других маломощных устройств (десятки Ватт).

Прежде чем перейти к рассмотрению популярных схем, ознакомьтесь со структурой импульсного блока питания с ШИМ-контроллером.

Верхняя часть схемы отвечает за фильтрацию, выпрямление и сглаживание пульсаций сетевого напряжения 220, по сути аналогична как в предыдущем типе, так и в последующих.

Самое интересное – это блок ШИМ, сердце любого достойного блока питания. ШИМ-контроллер – это устройство управляющие коэффициентом заполнения импульсов выходного сигнала на основании уставки, определенной пользователем или обратной связи по току или напряжению. ШИМ может управлять как мощностью нагрузки с помощью полевого (биполярного, IGBT) ключа, так и полупроводниковым управляемым ключом в составе преобразователя с трансформатором или дросселем.

Изменяя ширину импульсов при заданной частоте – вы изменяете и действующее значение напряжение, сохраняя при этом амплитудное, вы можете проинтегрировать его с помощью C- и LC-цепей для устранения пульсаций. Такой метод называется Широтно-Импульсное Моделирование, то есть моделирование сигнала за счёт ширины импульсов (скважности/коэффициента заполнения) при постоянной их частоте.

На английском языке это звучит, как PWM-controller, или Pulse-Width Modulation controller.

На рисунке изображен биполярный ШИМ. Прямоугольные сигналы – это сигналы управления на транзисторах с контроллера, пунктиром изображена форма напряжения в нагрузке этих ключей – действующее напряжение.

Более качественные блоки питания малой средней мощности часто построены на интегральных ШИМ-котроллерах со встроенным силовым ключом. Преимущества перед автогенераторной схемой:

  • Рабочая частота преобразователя не зависит ни от нагрузки, ни от напряжения питания;

  • Более качественная стабилизация выходных параметров;

  • Возможность более простой и надежной настройки рабочей частоты на этапе проектирования и модернизации блока.

Ниже будут расположены несколько типовых схем блоков питания (для увеличения нажмите на картинку):

Здесь RM6203 – и контроллер и ключ в одном корпусе.

В этой схеме используется внешний MOSFET ключ.

То же самое, но на другой микросхеме.

Обратная связь осуществляется с помощью резистора, иногда оптопары подключенной к входу с названием Sense (датчик) или Feedback (обратная связь). Ремонт таких блоков питания в общем аналогичен. Если все элементы исправны, и напряжение питания поступает на микросхему (ножка Vdd или Vcc), значит дело скорее всего в ней, более точно можно определить с помощью осциллографа просмотрев сигналы на выходе (ножка drain, gate).

Практически всегда заменить такой контроллер можно любым аналогом с подобной структурой, для этого нужно сверить datasheet на тот, что установлен на плате и тот, что у вас в наличии и впаять, соблюдая распиновку, как это изображено на следующих фотографиях.

Или вот схематически изображена замена подобных микросхем.

Мощные и дорогие блоки питания

Блоки питания для светодиодных лент, а также некоторые блоки питания для ноутбуков выполняются на ШИМ-контроллере UC3842.

Схема более сложная и надежная. Основным силовым компонентом является транзистор Q2 и трансформатор. При ремонте нужно проверить фильтрующие электролитические конденсаторы, силовой ключ, диоды Шоттки в выходных цепях и выходные LC-фильтры, напряжения питания микросхемы, в остальном методы диагностики аналогичны.

Однако более подробная и точная диагностика возможна лишь с использованием осциллографа, в противном случае – проверьте короткие замыкания платы, пайку элементов и обрывы дороже. Может помочь замена подозрительных узлов на заведомо рабочие.

Более совершенные модели источников питания для светодиодных лент выполнены на практически легендарной микросхеме TL494 (любые буквы с цифрами «494») или её аналоге KA7500. Кстати на этих же контроллерах построено большинство компьютерных блоков питания AT и ATX. 

Вот типовая схема блока питания на этом ШИМ-контроллере (нажмите на схему):

Такие блоки питания отличаются высокой надёжностью и стабильностью работы.

Краткий алгоритм проверки:

1. Запитываем микросхему согласно распиновки от внешнего источника питания 12-15 вольт (12 ножка – плюс, а на 7 ножку – минус).

2. На 14 ножки должно появиться напряжение 5 Вольт, которое будет оставаться стабильным при изменении питания, если оно «плавает» - микросхему под замену.

3. На 5 выводе должно быть пилообразное напряжение «увидеть» его можно только с помощью осциллографа. Если его нет или форма искажена – проверяем соответствие номинальным значениям времязадающей RC-цепи, которая подключена к 5 и 6 выводам, если нет – на схеме это R39 и C35, их под замену, если после этого ничего не изменилось – микросхема вышла из строя.

4. На выходах 8 и 11 должны быть прямоугольные импульсы, но их может не быть из-за конкретной схемы реализации обратной связи (выводы 1-2 и 15-16). Если выключить и подключить 220 В, на какое-то время они там появятся и блок снова уйдёт в защиту – это признак исправной микросхемы.

5. Проверить ШИМ можно закоротив 4 и 7 ножку, ширина импульсов увеличится, а закоротив 4 на 14 ножки – импульсы исчезнут. Если у вас получились другие результаты – проблема в МС.

Это наиболее краткая проверка данного ШИМ-контроллера, о ремонте блоков питания на их основе есть целая книга «Импульсные блоки питания для IBM PC».

Хоть и посвящена она компьютерным блоками питания, но там много полезной информации для любого радиолюбителя.

Вывод

Схемотехника блоков питания для светодиодных лент аналогична любым блокам питания с подобными характеристиками, довольно хорошо поддаётся ремонту, модернизации и перестройки на необходимые напряжения, разумеется, в разумных пределах. 

Алексей Бартош

Смотрите также у нас на сайте: 

Схемы блоков питания переносных электронных устройств

Что такое импульсный блок питания и чем он отличается от обычного аналогового

Советы по ремонту импульсных блоков питания

Видеозаписи процесса ремонта различной бытовой техники

electrik.info

Доработка недорогих китайских драйверов для светодиов

Для конструирования светодиодных светильников постоянно требуются источники питания — драйвера. При большом объеме вполне можно наладить сборку драйверов самостоятельно, но себестоимость таких драйверов получается не такой уж и низкой, а изготовление и пайка двухсторонних печатных плат с SMD-компонентами — процесс в домашних условиях довольно трудоемкий.

Я решил обойтись готовым драйвером. Нужен был недорогой драйвер без корпуса, желательно с возможностью настройки тока и диммированием.

Выбор пал на китайского производителя QIHANGвыпускающего широкий спектр данной продукции.

Где и как купить можно прочитать в моей статье на профильном блоге mysku.ru. Скажу только, что мне  20Вт драйвера на 6-10 светодиодов 600мА обошлись примерно по $2.5

Характеристики драйвера

  • Артикул: QH-20WLP6 ~ 10X3W
  • Входное напряжение: AC 85 ~ 277V
  • Выходное напряжение: DC 18 ~ 35V
  • Выходной ток: 0.6A
  • Выходная мощность: 20Вт
  • КПД: ? 88%
  • Точность выходных параметров: ± 3%
  • Коэффициент мощности (PF): ? 0,95
  • Размер пульсации на выходе: ? 50 мВ (не соответствует действительности)
  • Размеры: длина X ширина X высота = 47 х 20 х 13мм
  • Рабочая температура: -40 ~ + 85 ° C
  • Вес 20г

На фото видна микросхема драйвера QH7938. Поиск в интернете приводит к даташиту на эту микросхему на китайском языке Даташит явно не полный, на схеме не хватает номиналов деталей да и на драйвере элементов явно больше. И что делать с загадочными ногами DIM и RTH?

Спасибо  пользователю Муськи Sarayan14 который уже ковырял данный драйвер и даже нарисовал схему.

Схему перерисовал и немного доработал

Подключаю цепочку из 9-ти трех-ваттных светодиодов. Все работает, ток стабильный 598мА, но прибор в режиме измерения переменного напряжения показывает пульсации на выходе около 1В или более 3%. Где же заявленные в характеристиках 50мВ?

Доработка №1. Уменьшаем пульсации на выходе.

Как уменьшить пульсации выходного напряжения? Правильно, конденсаторами. Конденсаторы можно поставить в двух местах — увеличить выходную емкость и добавить конденсатор на входе после мостика параллельно пленочному конденсатору на 0.22мкФ.

Для тестирования применяю стрелочный прибор в режиме измерения переменного напряжения и самодельный люксметр, измеряющий пульсации светового потока

Характеристики без конденсаторов ~0.9В и 8.7% (пульсации светового потока)

Конденсатор на выходе ожидаемо уменьшат пульсации вдвое ~0.4В и 4%

А вот 10мкФ конденсатор на входе уменьшает пульсации в 9 раз ~0.1В и 1%, правда добавление этого конденсатора значительно снижает PF (коэффициент мощности)

Оба конденсатора приближают характеристики выходных пульсаций к паспортным ~ 0.05В и 0.6%

Итак пульсации побеждены при помощи двух конденсаторов из старого блока питания.

Доработка №2. Настройка выходного тока драйвера

Основное предназначение драйверов — поддерживать стабильный ток на светодиодах. Данный драйвер стабильно выдает 600мА.

Иногда ток драйвера хочется изменить. Обычно это делается подбором резистора или конденсатора в цепи обратной связи. Как обстоят дела у этих драйверов? И зачем здесь установлены три параллельных резистора малого сопротивления R4, R5, R6?

Все правильно. Ими можно задавать выходной ток. Видимо, все драйверы одинаковой мощности, но на разные токи и отличаются именно этими резисторами и выходным трансформатором, дающим разное напряжение.

Если аккуратно демонтировать резистор на 1.9Ом, получаем выходной ток 430мА, демонтировав оба резистора 300мА.

Можно пойти и обратным путем, подпаяв параллельно еще один резистор, но данный драйвер выдает напряжение до 35В и при большем токе мы получим превышение по мощности, что может привести с выходу драйвера из строя. Но 700мА вполне можно выжать.

Итак, при помощи подбора резисторов R4, R5 и R6 можно уменьшать выходной ток драйвера (или очень незначительно увеличивать) не меняя количество светодиодов в цепочке.

Доработка 3. Диммирование

На плате драйвера имеется три контакта с надписью DIMM, что наводит на мысль, что данный драйвер может управлять мощностью светодиодов. О том же говорит и даташит на микросхему, хотя типовых схем диммирования в них не приведено. Из даташита можно почерпнуть информацию, что подавая на ногу 7 микросхемы напряжение -0.3 — 6В, можно получить плавное регулирование мощности.

Подключение к контактам DIMM переменного резистора ни к чему не приводит, кроме того, нога 7 микросхемы драйвера вообще ни к чему не подключена. Значит снова доработки.

Подпаиваем резистор на 100К к ноге 7 микросхемы

Теперь подавая между землей и резистором напряжение 0-5В получаем ток 60-600мА

Чтобы уменьшить минимальный ток диммирования, необходимо уменьшить и резистор. К сожалению, в даташите про это ничего не написано, поэтому подбирать все компоненты придется опытны путем. Меня лично устроило диммирования от 60 до 600мА.

Если нужно организовать диммирование без внешнего питания, то можно взять напряжение питания драйвера ~15В (нога 2 микросхемы или резистор R7) и подать по следующей схеме.

Ну и, напоследок, подаю ШИМ с D3 ардуино на диммирующий вход.

Пишу простейший скетч, меняющий уровень ШИМ от 0 до максимуму и обратно:

#include

void setup() { pinMode(3, OUTPUT); Serial.begin(9600); analogWrite(3,0);

}

void loop() { for( int i=0; i< 255; i+=10 ){ analogWrite(3,i); delay(500); } for( int i=255; i>=0; i-=10 ){ analogWrite(3,i); delay(500); }

}

Получаю диммирование при помощи ШИМ.

Диммирование при помощи ШИМ увеличивает выходные пульсации примерно на 10-20% по сравнению с управлением постоянным током. Максимально пульсации увеличиваются примерно вдвое при установке тока драйвера в половину от максимального.

Проверка драйвера на КЗ

Токовый драйвер должен корректно реагировать на короткое замыкание. Но лучше китайцев проверить. Не люблю я такие штуки. Под напряжением что-то втыкать. Но искусство требует жертв. Закорачиваем выход драйвера во время работы:

Драйвер нормально переносит короткие замыкания и восстанавливает свою работу. Защита от КЗ есть.

Подведем итоги

Плюсы драйвера

  • Малые габариты
  • Низкая стоимость
  • Возможность регулировки тока
  • Возможность диммирования

Минусы

  • Высокие выходные пульсации (устраняется добавлением конденсаторов)
  • Вход диммирования нужно распаивать
  • Мало нормальной документации. Неполный даташит
  • При работе обнаружился еще один минус — помехи на радио в ФМ диапазоне. Лечится установкой драйвера в алюминиевый корпус или корпус обклеенный фольгой или алюминиевым скотчем

Драйверы вполне годятся для тех, кто дружит с паяльником или для тех кто не дружит, но готов терпеть выходные пульсации 3-4%.

Полезные ссылки

Из цикла — коты это жидкость. Тимофей — литров 5-6 )))

samopal.pro

Подключение светодиодной ленты к сети 220В схема

Чтобы запитать светодиодную ленту от сети обычной бытовой сети переменного тока 220В 50Гц нужно выполнить три условия:

  • преобразовать переменное напряжение сети в постоянное;
  • выровнять уровни напряжений: снизить сетевое напряжение до 12В или изменить схему подключения светодиодов, чтобы на них можно было подавать высокое напряжение;
  • стабилизировать параметры электрического питания.

Проще всего использовать готовый блок питания для светодиодной ленты 12В, он рассчитан на безопасное напряжение. Но в применении этого блока питания есть и минусы: он стоит денег и собрать его не так просто, кроме того из-за низкого напряжения светодиодные ленты не стоит располагать далеко от блока питания, для компенсации потерь напряжения придется использовать толстые провода.

Второй вариант: переделать светодиодную ленту и вместо последовательно-параллельного включения светодиодов использовать последовательное. При такой схеме включения светодиодная сборка питается малым током, но при большом напряжении. Кроме того, если пожертвовать гальванической развязкой, то схема драйвера питания сильно упрощается.

Внимание!!! Схемы без гальванической развязки от сети можно применять там, где нет опасности поражения электрическим током, например в сухом помещении на потолке.

Самое интересное, что схему подобного драйвера можно сделать из деталей отслуживший свой срок энергосберегающей лампочки!

Рассмотрим подключение светодиодной ленты к сети 220В схема приведена на рисунке.

Таблица номиналов элементов схемы:

  • C1 – 2,2 мкФ 400 В
  • R1 – 1,3 кОм
  • R2 – 4,3 кОм
  • R3 – 47 Ом
  • VD1 .. VD4 – 1N4007
  • VT1, VT2 — 13002

На схеме можно выделить три узла:

  • выпрямитель переменного напряжения и фильтр на элементах C1, R1, VD1 – VD4;
  • стабилизатор тока на R2, R3, VT1, VT2;
  • сборка из светодиодов HL1 – HLN.

Про работу выпрямителя можно почитать здесь. В данной схеме кроме диодного моста из 4-х диодов добавлены токоограничивающий резистор R1 защищающий от бросков тока, фильтрующий конденсатор C1. При подаче на вход данного выпрямителя сетевого напряжения 220В / 50Гц, на выходе выпрямителя (на конденсаторе С1) появиться постоянное напряжение равное примерно 300В с пульсацией частотой 100Гц. Чем больше будет емкость конденсатора, тем меньше будет пульсация.

Светодиоды требуют питания стабилизированным током, часто их питают стабилизированным напряжением через резистор ограничивающий ток, например как в светодиодных лентах. Но зачем нам идти на компромиссы, если сделать стабилизатор тока, работающий при больших напряжениях проще, чем стабилизатор напряжения. Работа схемы стабилизатора тока рассматривалась тут.

И последний элемент это последовательная сборка светодиодов из ленты. Стандартная светодиодная лента собирается по схеме из трех последовательных светодиодов и одного токоограничивающего резистора. Такой участок подключается параллельно куче других таких же участков и все это подключается к 12 В. На каждом диоде падает напряжение от 3,3 В до 3,6 В, таким образом на токоограничивающий резистор остается около полутора Вольт.

Чтобы повысить напряжение участки из трех диодов включаем последовательно с друг другом, а резистора можно выпаять, закорачивать или заменять перемычками, т.е. как будет удобнее с точки зрения топологии. Внимание!!! Соблюдайте полярность, при ошибка в полярности подключения светодиода при таком напряжении будет для светодиода фатальной.

Ток которые протекает через тройку светодиодов можно примерно посчитать, разделив полтора Вольта на сопротивление токоограничивающего резистора. То есть при сопротивлении 150 Ом, ток через светодиоды составит 10 мА.

Именно такая лента со светодиодами на 10 мА попалась мне, для неё и были рассчитывать параметры драйвера. Если нужно уменьшить ток, то придется пропорционально увеличивать значение сопротивления резистора R3.

При сетевом напряжении в 220 В, описанная схема способна обеспечить последовательное подключение до 25 групп из трех диодов или 75 единичных. Если напряжение в сети часто бывает пониженным, то лучше снизить количество групп светодиодов до 20 или даже 15.

А вот и плата от энергосберегающей лапочки, откуда можно получить нужные радиоэлементы.

Лампочка разбилась, а плата осталась в рабочем состоянии.

Кстати полярность подключения диодов, выводы транзисторов можно срисовать прямо с этой платы, все что нужно там помечено. Добываем элементы из этой платы и собираем новую схему. На фото видно, что транзисторы в маломощном корпусе TO-92 такой корпус не рассеет мощность больше 600 мВт. И суммарная мощность схема с таким транзистором не позволит отдавать в нагрузку более пары Ватт. Если потребуется собрать схему для более мощной нагрузки, то транзистор VT2 должен быть в более мощном корпусе и желательно с радиатором.

hardelectronics.ru

Самодельный драйвер для светодиодов

Самый простой драйвер для питания светодиодов, который может сделать каждый своими руками, схема драйвера с описанием изготовления.

Светодиоды, в отличие от других излучающих свет приборов (ламп, светильников), не могут быть напрямую включены в бытовую сеть. Более того, светодиоды не могут питаться фиксированным напряжением, которое указано в паспорте. Устройство питания светодиода должно иметь элементы, ограничивающие ток через светодиод в соответствии с его характеристиками, или балласт. Именно поэтому диод называется «токовым прибором», и использование традиционных преобразователей напряжения неприменимо, для питания светодиодов следует использовать драйвер.

Довольно часто для подключения светодиодов в автомобиле, тех же «ангельских глазок» на COB кольцах, требуется драйвер, сделать его можно самостоятельно и обойдётся он вам сущие копейки.

У нас есть автомобильная сеть 12 V, считаем какой нам нужен резистор на примере COB кольца, мощностью 5 Вт.

Мы можем узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания. Потребляемый ток равен мощности деленной на напряжение в сети.

COB кольцо потребляет 5 Вт.

led-lampu.ru

Схемы для самодельных блоков питания светодиодных лент

Современный рынок осветительных приборов позволяет сделать любой тип освещения для своего дома. При этом многие умельцы некоторые элементы осветительных приборов собирают своими руками. Самым распространенным типом освещения на сегодняшний день является светодиодная лента. Самостоятельный сбор в данной ситуации возможен как отдельных диодов, так и целого блока питания к ленте.

Эта статья расскажет вам, как своими руками можно сделать блок питания к светодиодной ленте.

Особенности изделия

Для светодиодной ленты присущи некоторые особенности, благодаря которым она пользуется наибольшей популярностью среди потребителей. К ним можно отнести:

  • возможность создания скрытой подсветки;
  • качественный световой поток;
  • наличие разнообразия в цветовой гамме свечения;
  • доступная стоимость изделия;
  • простой монтаж, который легко можно сделать своими руками.

Единственным минусом светодиодной ленты является необходимость подключения ее к источнику питания только через «посредника» – блок питания. Напрямую подключение не осуществляется. Кроме этого сами светодиоды обладают особенной вольт-амперной характеристикой, из-за которых они могут нагреваться в процессе работы. Поэтому очень важно правильно подобрать блок питания для светодиодной ленты.

Немного о посреднике

Разные модели

Любой вид светодиодной ленты всегда идет в комплекте с блоком питания, через который проводится подключение источника света к электросети. Блок питания для светодиодной ленты может быть на 5В, 12В, 19В. Разные типы блока подходят для различных целей:

  • 5В – для зарядки мобильных устройств;
  • 12В – для питания компьютера, а также некоторых видов планшета;
  • 19В – применяются для питания мониторов, ноутбуков и т.п.

У каждого из нас в доме имеется хотя бы парочка таких блоков, которые остались после того, как соответствующая им техника вышла из строя.

Обратите внимание! Любой из перечисленных видов блока питания можно адаптировать своими руками для светодиодной ленты. Хотя многие утверждают, что зарядники на 5В в данной ситуации использовать нельзя. Из них, с использованием 3-6 светодиодов, можно сделать простой ночник для детской комнаты.

Рассмотрим более подробно особенности блока питания на 12В. Такой блок питания бывает от 6 до 36 Ватт. Обычно, для нормальной подсветки рабочей поверхности хватает 10 Ватт. Такой блок делится на два подвида:

  • старые, основанные на трансформаторах. Для них характерен больший вес;
  • современные импульсные. По-другому он еще называется электронным трансформатором. Для них характерен небольшой вес и размеры, но большая мощность.

Обратите внимание! Специалисты рекомендуют использовать современные импульсные изделия. В противном случае блок питания (БП) в ходе работы может нагреваться, если его мощность будет выше такого же показателя у ленты более чем в два раза.

Прибор на 19В

Модель на 19В

Такой БП также можно переделать под светодиодную ленту. Данный тип блоков широко применим для компьютерной и оргтехники. Зачастую они имеют мощность от 16 д 32 В.

БП на 19В позволит вам запитать светодиодную ленту на 6000 Люмен и даст возможность создать освещение помещения с габаритами 20 квадратов. Внутрь самого корпуса лезть в данной ситуации не придется. Можно использовать более простые способы, с использованием небольшого понижателя со стабилизатором. Рассмотрим два основных способа.

Способ № 1. В данной ситуации нам понадобится стабилизатор на 7812. Он должен быть на микросхеме типа КРЕН 7812. В ходе его монтажа на радиатор охлаждения данный стабилизатор выдержит ток 1 Ампер. Схема сборки показана ниже.

Схема

1posvetu.ru


Смотрите также


2012-2020 © Содержание, карта сайта.