эффективные решения для вашего бизнеса  
Дон Изолятор моб: +7 988 540 32 29
тел: (863) 219-12-79
факс: (863) 219-12-79
e-mail: [email protected]
гарантированная защита и надежность
Продукция Контакты Информация

doctorlom.com

Момент распределенной нагрузки

Вопрос: Как определить момент в точке балки, возникающий от распределенной нагрузки?

Ответ: При расчетах балок, в сопромате часто возникает задача определить изгибающий момент в сечениях балки вызванный действием равномерно распределенной нагрузки q.

В этом случае, как правило, удобнее пользоваться понятием равнодействующей силы Rq, которой можно заменить распределенную нагрузку.

Рассмотрим пример нахождения момента в произвольной точке C от равномерно распределенной между точками A и B нагрузки интенсивностью q.

Для определения момента нагрузки необходимо знать ее длину a и расстояние z от любого ее края до рассматриваемой точки.

Заменим распределенную нагрузку ее равнодействующей Rq, которая для равномерного случая распределения будет располагаться ровно посередине нагрузки, при этом ее величина определяется как произведение интенсивности q нагрузки на ее длину a

Как известно момент силы определяется произведением силы на плечо

В данном случае силой в вышеуказанном выражении является равнодействующая Rq.

Плечом этой силы является расстояние от точки C до равнодействующей нагрузки

Таким образом, момент нагрузки равен произведению интенсивности q нагрузки на ее длину a и на расстояние от ее середины до рассматриваемой точки a/2+z

Для случая, когда точка лежит в пределах действия нагрузки, аналогично:

Примечания:

  1. В случае действия неравномерно распределенной нагрузки ее интенсивность задается функцией.
  2. Для нагрузки, распределенной по площади (объему) при вычислении равнодействующей вместо длины надо подставлять площадь (объем) ее действия.
  3. Момент части распределенной нагрузки определяется аналогично.

Примеры решения задач > Краткая теория >

isopromat.ru

Информация

Равномерно распределенная нагрузка на балку


Техническая механика



Как мы уже знаем, любая сила характеризуется тремя свойствами: модулем (скалярной размерностью), вектором (направлением в пространстве) и точкой приложения. Для того, чтобы иметь полное представление о характере и последствиях воздействия любой силы на тело или элемент конструкции, необходимо знать - какова величина этой силы, куда она направлена и к какой точке приложена. В действительности сила не может быть приложена к точке, поскольку точка - безразмерная, бесконечно малая единица пространства, поэтому фактически силы воздействуют на очень малую площадку, размерами которой пренебрегают. Такие силы (приложенные к ничтожно малой площадке тела) называют сосредоточенными.

В реальности часто встречаются силы, приложенные не к точке, а к объему или поверхности тела, например сила тяжести, давления ветра, воды и т. п., т. е. нагрузку воспринимает не бесконечно малая площадка, а значительная площадь или объем тела. Такие силы называют распределенными. Примером распределенной силы (обычно употребляют выражение «распределенная нагрузка») может послужить выпавший на крышу дома снег. Сила тяжести снежного покрова давит на всю поверхность крыши, нагружая одинаково каждую единицу ее площади, а не какую-либо точку.

Плоская система распределенных сил характеризуется ее интенсивностью, обычно обозначаемой латинской буквой q. Интенсивность - это сила, приходящаяся на единицу длины (или площади) нагруженного участка.

Интенсивность в системе единиц СИ выражается в ньютонах на метр (Н/м) или, соответственно, в ньютонах на квадратный метр (для нагрузки, действующей на площадь).

Интенсивность воздействия силы на площадь характеризует такие физические понятия, как давление и напряжение. В плоской системе рассматривается интенсивность действия силы на единицу длины.



Распределенная нагрузка, имеющая постоянную интенсивность по всей длине участка называется равномерно распределенной (см. рисунок 1).

При решении задач статики распределенную нагрузку заменяют ее равнодействующей. Модуль равнодействующей равномерно распределенной нагрузки равен Q = ql (см. рисунок). Равнодействующая равномерно распределенной нагрузки Q прикладывается в середине отрезка АВ.

Распределенная нагрузка, имеющая переменную интенсивность, называется неравномерно распределенной (рис. 2). Примером такой нагрузки может служить меняющееся по высоте давление воды на плотину или снег, лежащий на крыше неровным слоем.

Определение точки С приложения равнодействующей неравномерно распределенной нагрузки производится путем геометрических расчетов и построений. Равнодействующая сила Q при таких нагрузках равна площади фигуры, охватываемой эпюрой нагрузки, а точка С приложения равнодействующей расположена в центре тяжести этой фигуры.

Нагрузки, распределенные по поверхности (по площади), характеризуются давлением, т. е. силой, приходящейся на единицу площади. В системе единиц СИ давление измеряется в Паскалях (Па) или ньютонах на квадратный метр (Н/м2).

***

Пример решения задачи с распределенной нагрузкой

Задача: Балка находится в равновесии под действием сосредоточенной силы F = 100 Н и равномерно распределенной нагрузки q = 60 Н/м (см. схему 3). Необходимо определить реакцию RВ опоры В.

Решение. Поскольку по условию задачи необходимо определить реакцию опоры В, составим уравнение моментов сил относительно опоры А, учитывая, что равномерно распределенную нагрузку можно заменить сосредоточенной силой: Q = ql,    где l = (10 - 5) метров - часть балки, к которой приложена распределенная нагрузка. Точка приложения сосредоточенной силы Q расположена в середине той части балки, к которой приложена распределенная нагрузка; плечо этой силы относительно опоры А будет равно: h = (10 - 5)/2 = 2,5 м. Cоставляем уравнение моментов сил относительно опоры А из условия, что балка находится в состоянии равновесия (уравнение равновесия).

Учитываем знаки:

  • сила RВ создает относительно точки А положительный момент, плечо которого равно 10м;
  • сила F создает относительно точки А отрицательный момент, плечо которого равно 5 м;
  • распределенная нагрузка q создает (посредством силы Q и плеча h) относительно точки А отрицательный момент.

Получаем уравнение равновесия балки, в котором лишь одна неизвестная величина (RВ):

ΣM = 10RВ - qlh - 5F = 10RВ - q(10-5)(10-5)/2 - 5F = 0, откуда находим искомую реакцию опоры RВ:

RВ = {q(10-5)(10-5)/2 + 5F}/10 = 125 Н

Задача решена.

***

Условия равновесия плоской системы сходящихся сил


Главная страница
Специальности
Учебные дисциплины
Олимпиады и тесты

k-a-t.ru

Распределенная нагрузка

Воздействие на детали, конструкции, элементы механизмов может быть задано распределенными нагрузками: в плоской системе задается интенсивность действия по длине конструкции, в пространственной системе – по площади.

Размерность для линейной нагрузки — Н/м, для нагрузки распределенной по площади — Н/м2, для объемной (например при учете собственного веса элементов конструкции) — Н/м3.

Например, на рисунке 1.23, а приведена равномерно распределенная по длине AB нагрузка интенсивностью q, измеряемая в Н/м. Эта нагрузка может быть заменена сосредоточенной силой

приложенной в середине отрезка AB.

На рисунке 1.23, б показана равномерно убывающая (возрастающая) нагрузка, которая может быть заменена равнодействующей силой

приложенной в точке C, причем AC = 2/3AB.

В произвольном случае, зная функцию q(x) (рисунок 1.23, в), рассчитываем эквивалентную силу

Эта сила приложена в центре тяжести площади, ограниченной сверху от балки AB линией q(x).

Примером может служить расчет усилий, разрывающих стенки баллона со сжатым газом. Определим результирующую силу давления в секторе трубы при интенсивности q [Н/м]; R – радиус трубы, 2α – центральный угол, ось Ox – ось симметрии (рисунок 1.24).

Выделим элемент сектора с углом ∆φ и определим силу ∆Q, действующую на плоский элемент дуги:

∆Q = q ∙ ∆l = q ∙ R ∙ ∆φ. (1.14)

Проекция этой силы на ось Ox будет

∆Qx = q ∙ R ∙ ∆φ∙ cosφ. (1.15)

В силу симметрии элемента трубы (с дугой AB) относительно оси Ox проекция результирующей силы на ось Oy:

Qy = 0, т.е. Q = Qx, (1.16)

где АВ – хорда, стягивающая концы дуги.

Для цилиндрической емкости высотой h и внутренним давлением P на стенки действует нагрузка интенсивностью q = p [Н/м,2]. Если цилиндр рассечен по диаметру (рисунок 1.25), то равнодействующая этих сил равна F = q ∙ d ∙ h (d – внутренний диаметр) или

F = p ∙ 2R ∙ h.

Разрывающие баллон по диаметру усилия:

S1 = S2 = S; 2S = F;

S = p∙h∙R

. (1.18)

Если принять a – толщина стенки, то (пренебрегая усилиями в крышке и дне цилиндра) растягивающее напряжение в стенке равно

>> Уравнения равновесия системы сил

isopromat.ru

Пример 3.3. Расчет балки настила | Строительный справочник

Расчетная схема балки настила приведена на рис.1.

Нормативная равномерно распределенная нагрузка на балку qn = 1,02*(pn + gn)*b, кН/м2, где 1,02 — коэффициент, учитывающий собственный вес балки. Нормативная нагрузка от стального профилированного настила толщиной 1 см

ggz = 78,5(0,98*102) = 0,77 кН/м2,

где 78,5 кг/м — масса 1 м настила; 0,98*102 — коэффициент пересчета в кг и а кН; b — шаг балок настила (1м) является шириной грузовой площади;

qA = 1,02(26 + 0,77)1 = 27,3 кН/м.

Расчетная равномерно распределенная нагрузка на балку: qb = 1,02(γnpn + γgpn)b; qb = 1,02(1,2*26 + 1,05*0,77)*1,0 = 32,6 кН/м. Максимальный изгибающий момент: Мmax = (qa2)/8; где а — шаг главных балок (пролет балок настила) 5,5 м.

Мmax = (32,6*(5,5*5,5))/8 = 123,26 кН*м.

Максимальная поперечная сила: Qmax = (qa)/2; Qmax = (32,6*5,5)/2 = 89,65 кН. Требуемы момент сопротивления поперечного сечения балки относительно оси х: Wпрx = Мmax/(c1Ryγc); где c1 = 1,12 = коэффициент, учитывающий пластические деформации; Ry = 23 кН/см2 — расчетное сопротивление изгибу стали С235. γc = 1 = коэффициент условий работы. Wпрx = 12326/1,12*23*1) = 478,4 см3. По сортаменту подбираем двутавр прокатного профиля с принятым моментом сопротивления относительно оси х:

Wпрx > Wтрx; №33; Iх = 9840 см4.

Выполненный выше расчет произведен по первому предельному состоянию.

Расчет максимального прогиба балки по второму предельному состоянию

f = 5/384 * (qна4)/EIх) ≤ [f], где E = 2*104 кН/см2 — модуль упругости. Iх = 9840 см4 (из сортамента). [f] = (1/250)а — предельно допустимый прогиб; [f] = 0,022 см; f = 5/384 * (32,6*5,54)/2*104*9840 = 0,0002 см. 0,0002 ≤ 0,022.

Условие выполняется, следовательно, двутавр подобран правильно.

Примеры:

spravkidoc.ru

1.6. Распределённая нагрузка

Поверхностные и объёмные силы представляют собой нагрузку, распределённую по некоторой поверхности или объёму. Такая нагрузка задаётся интенсивностью , которая представляет собой силу, приходящуюся на единицу некоторого объёма, или некоторой площади, или некоторой длины.

Особое место при решении ряда практически интересных задач занимает случай плоской распределённой нагрузки, приложенной по нормали к некоторой балке. Если вдоль балки направить ось , то интенсивность будет функцией координаты и измеряется в Н/м. Интенсивность представляет собой силу, приходящуюся на единицу длины.

Плоская фигура, ограниченная балкой и графиком интенсивности нагрузки, называется эпюрой распределённой нагрузки (Рис. 1.28). Если по характеру решаемой задачи можно не учитывать деформации, т.е. можно считать тело абсолютно твёрдым, то распределённую нагрузку можно (и нужно) заменить равнодействующей.

Рис. 1.28

Рис. 1.29

Разобьём балку на отрезков длиной , на каждом из которых будем считать интенсивность постоянной и равной , где –координата отрезка . При этом кривая интенсивности заменяется ломаной линией, а нагрузка, приходящаяся на отрезок , заменяется сосредоточенной силой , приложенной в точке (Рис. 1.29). Полученная система параллельных сил имеет равнодействующую, равную сумме сил, действующих на каждый из отрезков, приложенную в центре параллельных сил.

Понятно, что такое представление тем точнее описывает реальную ситуацию, чем меньше отрезок , т.е. чем больше число отрезков . Точный результат получаем, переходя к пределу при длине отрезка , стремящейся к нулю. Предел, получаемый в результате описанной процедуры, представляет собой интеграл. Таким образом, для модуля равнодействующей получаем:

Для определения координаты точки приложения равнодействующей используем теорему Вариньона:

если система сил имеет равнодействующую, то момент равнодействующей относительно любого центра (любой оси) равен сумме моментов всех сил системы относительно этого центра (этой оси)

Записывая эту теорему для системы сил в проекциях на ось и переходя к пределу при длине отрезков, стремящейся к нулю, получаем:

Очевидно, модуль равнодействующей численно равен площади эпюры распределённой нагрузки, а точка её приложения совпадает с центром тяжести однородной пластины, имеющей форму эпюры распределённой нагрузки.

Отметим два часто встречающихся случая.

Равномерно распределённая нагрузка,(Рис. 1.30). Модуль равнодействующей и координата её точки приложения определяются по формулам:

В инженерной практике такая нагрузка встречается довольно часто. Равномерно распределённой в большинстве случаев можно считать весовую и ветровую нагрузку.

Рис. 1.30

Рис. 1.31

Линейно распределённая нагрузка,(Рис. 1.31). В этом случае:

В частности, давление воды на вертикальную стенку прямо пропорционально глубине .

Пример 1.5

Определить реакции опор ибалки, находящейся под действием двух сосредоточенных сил и равномерно распределённой нагрузки. Дано:

Рис. 1.32

Найдём равнодействующую распределённой нагрузки. Модуль равнодействующей равен

плечо силы относительно точкиравноРассмотрим равновесие балки. Силовая схема представлена на Рис. 1.33.

Рис. 1.33

Условия равновесия в рассматриваемом случае имеют вид:

Пример 1.6

Определить реакцию заделки консольной балки, находящейся под действием сосредоточенной силы, пары сил и распределённой нагрузки (Рис. 1.34).

Дано:

Заменим распределённую нагрузку тремя сосредоточенными силами. Для этого разобъём эпюру распределённой нагрузки на два треугольника и прямоугольник. Находим

Силовая схема представлена на Рис. 1.35.

Рис. 1.34

Рис. 1.35

Вычислим плечи равнодействующих относительно оси

Условия равновесия в рассматриваемом случае имеют вид:

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ:

1. Что называется интенсивностью распределённой нагрузки?

2. Как вычислить модуль равнодействующей распределённой нагрузки?

3. Как вычислить координату точки приложения равнодействующей распределённой

нагрузки?

4. Чему равен модуль и какова координата точки приложения равномерно распределённой нагрузки?

5. Чему равен модуль и какова координата точки приложения линейно распределённой нагрузки?

ЗАДАЧИ, РЕКОМЕНДУЕМЫЕ ДЛЯ РАЗБОРА В АУДИТОРИИ И ДЛЯ ЗАДАНИЯ НА ДОМ:

Из сборника задач И.В.Мещерского: 4.28; 4.29; 4.30; 4.33; 4.34.

Из учебника «ТЕОРЕТИЧЕСКАЯ МЕХАНИКА - теория и практика»: комплекты СР-2; СР-3.

ПРАКТИЧЕСКИЕ ЗАНЯТИЯ № 4-5

studfiles.net

1.12.Распределенная нагрузка

При решении практических задач далеко не всегда можно считать, что действующая на тело сила приложена в одной точке. Часто силы бывают приложены на целом участке тела (например снеговая нагрузка, ветровая и т.д.). Такая нагрузка называется распределенной. Равномерно распределенная нагрузка характеризуется интенсивностью q (рис.1.29). Интенсивность - это суммарная нагрузка, приходящаяся на единицу длины конструкции.

Единица измерения интенсивности [H/м], [кН/м]. При решении задач статики распределенную нагрузку можно заменить ее равнодействующей, которая равна произведению интенсивности на длину участка, на который действует распределенная нагрузка, и которая приложена в середине этого участка.

1.13. Решение задач на плоскую систему сил

Пример (рис.1.30). Определить реакции шарнирно опертой балки, нагруженной силой и парой сил с моментом М.

Решение. Воспользуемся тем же планом, который применялся для решение задач на сходящуюся систему сил. Объектом равновесия является вся балка, нагрузка на которую показана на чертеже. Отбросим связи - шарниры А и В. Реакцию неподвижного шарнира А разложим на две составляющих - и, а реакция подвижного шарнира В направлена перпендикулярно опорной плоскости. Таким образом, на балку действует плоская произвольная система сил, для которой можно составить три уравнения равновесия. Выберем оси координат и составим эти уравнения. Уравнения проекций:

1. Fkx = 0; Rax -Fcos(60) = 0;

2. Fky = 0; Ray + RB - Fcos(30) = 0;

(пара в уравнение проекций не входит, так как сумма проекций сил пары на любую ось равна нулю).

Уравнение моментов составляем относительно точки А, поскольку в ней пересекаются две неизвестных силы. При нахождении момента пары относительно точки А помним, что сумма моментов сил пары относительно любой точки равен моменту пары, а знак момента будет положительным, поскольку пара стремится повернуть тело против часовой стрелки. Для нахождения момента силы удобно разложить ее на вертикальную и горизонтальную составляющие:

Fx=Fcos(60), Fy=Fcos(30)

и воспользоваться теоремой Вариньона, причем следует учесть, что момент от силы относительно точки А равен нулю, поскольку ее линия действия проходит через эту точку. Тогда уравнение моментов примет вид:

3. ; Rв.3-FBcos(30)2 + M = 0.

Решая это уравнение получим:

Из уравнения (2) находим:

Ray = Fcos(30) - RB = 20,867 - 4=-2,67 кН,

а из уравнения (1) Rax = Fcos(60) = 20,5 = 1 кН.

Пример (рис.1.31). Определить реакции жестко защемленной балки длиной 3 м, нагруженной равномерно распределенной нагрузкой итенсивностью q=10кН/м.

Решение. Заменим равномерно распределенную нагрузку ее равнодействующей Q = 3q = 310 = 30 кН. Она будет приложена в середине пролета, то есть на расстоянии АС = 1,5 м. Рассматриваем равновесие балки АВ. Отбрасываем связь - жесткую заделку, а вместо нее прикладываем две составляющие реакции Rах и Rау и реактивный момент Mа. На балку будет действовать плоская произвольная система сил, для которой можно составить три уравнения равновесия, из которых можно найти искомые неизвестные.

Fкх = 0; Rах = 0;

Fку = 0; Rау - Q = 0; Rау = Q = 30 кН;

Mа(Fк) = 0; Mа - 1,5Q = 0; Mа = 1,5Q = 1,530 = 45 кHм.

studfiles.net

Приведение сосредоточенной нагрузки к эквивалентной равномерно распределенной

Расстояние между сосредоточенными нагрузками одинаковое, при этом расстояние от начала пролета до первой сосредоточенной нагрузки равно расстоянию между сосредоточенными нагрузками. В этом случае сосредоточенные нагрузки также попадают на начало и на конец пролета, но при этом вызывают только увеличение опорной реакции, на значение изгибающих моментов и на прогиб крайние сосредоточенные нагрузки никак не влияют, а потому при расчетах несущей способности конструкции не учитываются. Рассмотрим это на примере балок перекрытия опирающихся на перемычку. Кирпичная кладка, которая может быть между перемычкой и балками перекрытия, и создавать при этом равномерно распределенную нагрузку, для простоты восприятия не показана.

Рисунок 1. Приведение сосредоточенных нагрузок к эквивалентной равномерно распределенной нагрузке.

Как видно из рисунка 1, определяющим является изгибающий момент, который используется при расчетах конструкций на прочность. Таким образом, чтобы равномерно распределенная нагрузка создавала такой же изгибающий момент, как и сосредоточенная нагрузка, ее нужно умножить на соответствующий коэффициент перехода (коэффициент эквивалентности). А определяется этот коэффициент из условий равенства моментов. Думаю, рисунок 1 это очень хорошо иллюстрирует. А еще, анализируя полученные зависимости, можно вывести общую формулу для определения коэффициента перехода. Так, если количество приложенных сосредоточенных нагрузок является нечетным, т.е. одна из сосредоточенных нагрузок обязательно попадает на середину пролета, то для определения коэффициента эквивалентности можно использовать формулу:

γ = n/(n - 1) (305.1.1)

где n - количество пролетов между сосредоточенными нагрузками.

При этом эквивалентная равномерно распределенная нагрузка будет равна:

qэкв = γ(n-1)Q/l (305.1.2)

где (n-1) - количество сосредоточенных нагрузок.

Впрочем, иногда удобнее производить расчеты, исходя из количества сосредоточенных нагрузок. Если это количество выразить переменной m, то тогда

γ = (m +1)/m (305.1.3)

где m - количество сосредоточенных нагрузок.

При этом эквивалентная равномерно распределенная нагрузка будет равна:

qэкв = γmQ/l (305.1.4)

Когда количество сосредоточенных нагрузок является четным, т.е. ни одна из сосредоточенных нагрузок не попадает на середину пролета, то значение коэффициента можно принимать, как для следующего нечетного значения количества сосредоточенных нагрузок. В целом при соблюдении указанных условий загружения можно принимать следующие коэффициенты перехода:

γ = 2 - если на рассматриваемую конструкцию, например, балку попадает только одна сосредоточенная нагрузка посредине перемычки. 

γ = 1.33 - для балки, на которую действуют 2 или 3 сосредоточенные нагрузки;

γ = 1.2 - для балки, на которую действуют 4 или 5 сосредоточенных нагрузок;

γ = 1.142 - для балки, на которую действуют 6 или 7 сосредоточенных нагрузок;

γ = 1.11 - для балки, на которую действуют 8 или 9 сосредоточенных нагрузок.

2 вариант

Расстояние между сосредоточенными нагрузками одинаковое, при этом расстояние от начала пролета до первой сосредоточенной нагрузки равно половине расстояния между сосредоточенными нагрузками. В этом случае сосредоточенные нагрузки не попадают на начало и на конец пролета.

Рисунок 2.  Значения коэффициентов перехода при 2 варианте приложения сосредоточенных нагрузок.

Как видно из рисунка 2, при таком варианте загружения значение коэффициента перехода будет значительно меньше. Так, например, при четном количестве сосредоточенных нагрузок, коэффициент перехода вообще можно принимать равным единице. При нечетном количестве сосредоточенных нагрузок для определения коэффициента эквивалентности можно использовать формулу:

γ = (m +7)/(m +6) (305.2.1)

где m - количество сосредоточенных нагрузок.

При этом эквивалентная равномерно распределенная нагрузка все также будет равна:

qэкв = γmQ/l (305.1.4)

В целом при соблюдении указанных условий загружения можно принимать следующие коэффициенты перехода:

γ = 2 - если на рассматриваемую конструкцию, например, балку попадает только одна сосредоточенная нагрузка посредине перемычки, а попадают ли балки перекрытия на начало или конец пролета или расположены сколь угодно далеко от начала и конца пролета, в данном случае значения не имеет. А значение это имеет при определении сосредоточенной нагрузки.  

γ = 1 - если на рассматриваемую конструкцию, действует четное количество нагрузок. 

γ = 1.11 - для балки, на которую действуют 3 сосредоточенные нагрузки;

γ = 1.091 - для балки, на которую действуют 5 сосредоточенных нагрузок;

γ = 1.076 - для балки, на которую действуют 7 сосредоточенных нагрузок;

γ = 1.067 - для балки, на которую действуют 9 сосредоточенных нагрузок.

Не смотря на некоторую заковыристость определения, коэффициенты эквивалентности очень просты и удобны. Так как при расчетах очень часто известна распределенная нагрузка, действующая на квадратный или погонный метр, то чтобы не переводить распределенную нагрузку сначала в сосредоточенную, а потом снова в эквивалентную распределенную, достаточно просто умножить значение распределенной нагрузки на соответствующий коэффициент. Например, на перекрытие будет действовать нормативная распределенная нагрузка 400 кг/м2, при этом собственный вес перекрытия составит еще 300 кг/м2. Тогда при длине балок перекрытия 6 м на перемычку могла бы действовать равномерно распределенная нагрузка q = 6(400 + 300)/2 = 2100 кг/м. А дальше, если будет только одна балка перекрытия посредине пролета, то γ = 2, а

qэкв = γq = 2q (305.2.2)

И все.

Если ни одно из двух вышеприведенных условий не соблюдается, то использовать коэффициенты перехода в чистом виде нельзя, нужно добавить еще пару дополнительных коэффициентов, учитывающих расстояние до балок, не попадающих на начало и конец пролета перемычки, а также возможную несимметричность приложения сосредоточенных нагрузок. Вывести такие коэффициенты в принципе можно, однако в любом случае они будут понижающими во всех случаях, если рассматривать 1 вариант загружения и в 50% случаев, если рассматривать 2 вариант загружения, т.е. значения таких коэффициентов будут < 1. А потому для упрощения расчетов, а заодно и для большего запаса по прочности рассчитываемой конструкции вполне хватит коэффициентов, приведенных при первых двух вариантах загружения. 


Смотрите также


2012-2020 © Содержание, карта сайта.