эффективные решения для вашего бизнеса  
Дон Изолятор моб: +7 988 540 32 29
тел: (863) 219-12-79
факс: (863) 219-12-79
e-mail: [email protected]
гарантированная защита и надежность
Продукция Контакты Информация
Информация

Типы стабилизаторов напряжения однофазных


Какие бывают стабилизаторы напряжения?

На сегодняшний день низкое напряжение в сети – проблема весьма актуальная и решить ее лучше всего одним способом – приобрести стабилизатор напряжения (СН), который защитит всю технику в доме от выхода из строя. Чтобы правильно выбрать устройство, сначала нужно разобраться с его разновидностями, а также принципом работы каждого варианта исполнения. Далее мы рассмотрим плюсы и минусы основных типов стабилизаторов напряжения для дома, а именно: релейных, электронных, электромеханических, феррорезонансных и инверторных.

Релейные

Релейные или как их еще называют ступенчатые стабилизаторы, считаются самыми популярными для применения в доме и на даче. Связано это с низкой стоимостью устройств, а также высокой точностью регулирования. Принцип работы релейной модели заключается в переключении обмоток на трансформаторе при помощи силового реле, которое срабатывает в автоматическом режиме. Основными недостатками данного типа СН считается ступенчатое изменение напряжения (не плавное), искажение синусоиды и ограниченная мощность на выходе. Однако судя по отзывам в интернете, большинство покупателей довольны устройствами, т.к. цена в разы меньше более усовершенствованных моделей. Представителем стабилизаторов релейного типа для дома является Ресанта АСН-5000Н/1-Ц, который Вы можете увидеть на картинке ниже:

Электронные

Электронные СН могут быть симисторными и тиристорными. Принцип работы первых построен на переключении между обмотками автотрансформатора с помощью симистора, благодаря чему данный тип стабилизаторов напряжения имеет высокий КПД и быструю реакцию на срабатывание. Помимо этого симисторные модели бесшумно работают, что является еще одним плюсом СН данной разновидности. Что касается тиристорных, они также себя хорошо зарекомендовали и пользуются популярностью в быту. Единственный недостаток устройств электронного типа – более высокая стоимость.

Электромеханические

Электромеханические СН также принято называть сервомоторными или же сервоприводными. Работают такие стабилизаторы за счет передвижения угольного электрода по обмоткам автотрансформатора благодаря электроприводу. Электромеханические устройства также могут использоваться для защиты бытовых приборов в доме, квартире и на даче. Преимущество такого типа стабилизаторов – низкая стоимость, плавная регулировка напряжения и компактные размеры. Из минусов можно выделить повышенный шум при работе и низкое быстродействие.

Феррорезонансные

Принцип работы таких СН построен на эффекте феррорезонанса напряжения в цепи конденсатор-трансформатор. Данный тип защитных устройств не пользуется большой популярностью среди потребителей из-за шумности в работе, крупных габаритов (а, соответственно, и значительного веса), а также отсутствия возможности работать при перегрузках. Плюсами феррорезонансных стабилизаторов считаются длительный срок службы, точность регулировки и способность работать в помещениях с повышенной влажностью/температурой.

Инверторные

Наиболее дорогостоящий тип стабилизаторов напряжения, которые применяются не только в доме, но и на производстве. Принцип работы инверторных моделей заключается в преобразовании переменного тока в постоянный (на входе) и назад в переменный (на выходе) благодаря микроконтроллеру и кварцевому генератору. Безусловным плюсом инверторных СН с двойными преобразованием считается широкий диапазон входного напряжения (от 115 и до 290 Вольт), а также высокая скорость регулирования, бесшумность работы, компактные размеры и наличие дополнительных функций. Что касается последнего, то СН инверторного типа могут дополнительно защищать бытовые приборы от перенапряжения, а также остальных помех внешней электрической сети. Основным недостатком устройств считается самая высокая цена.

Узнать больше о разновидностях СН Вы можете на видео ниже:

Какие бывают типы стабилизаторов?

Вот мы и рассмотрели основные типы стабилизаторов напряжения. Хотелось бы также отметить, что бывают такие виды СН, как однофазные и трехфазные. В этом случае Вы должны выбрать модель, в зависимости от того, какое напряжение у Вас в сети – 220 или же 380 Вольт.

Какие бывают типы стабилизаторов?

samelectrik.ru

Типы стабилизаторов напряжения: достоинства и недостатки каждого вида

На производстве и в быту широко применяется электрическая энергия. Переменным током питают системы освещение, приводы механизмов электрических приборов, его подают на  сетевой разъем электронных устройств. Сбытовые организации не всегда обеспечивают надлежащее качество электрических сетей, что проявляется, в частности, в колебаниях сетевого напряжения. Это неприятное явление характерно для:

  • дачных поселков и небольших населенных пунктов;
  • сетей автономных электростанций, не входящих в единую энергосистему.

Колебания отрицательно влияют на качество функционирования техники, снижают ее надежность. Застраховать себя от этого явления можно применением стабилизатора, который включают между сетью и нагрузкой, рисунок 1.

Рисунок 1. Схема включения стабилизатора

Типы стабилизаторов напряжения по принципу работы

Стабилизацию можно выполняться различными способами. Принципы стабилизации, использованные разработчиком, определяют типы стабилизаторов напряжения.

Релейные

Релейные стабилизаторы, часто называемые ступенчатыми, представляют собой силовой трансформатор с несколькими выходами вторичной обмотки, один из которых принимается за общий. Датчик отслеживает состояние сети, при выходе за пределы разрешенных допусков осуществляет автоматическую регулировку выходного напряжения с помощью переключения реле. При срабатывании отдельных силовых реле происходит переключение обмоток с подключением нагрузки на тот вывод, напряжение на котором минимально отличается от заданного.

Конструктивная простота релейных стабилизаторов, неплохая точность регулирования, невысокая стоимость, высокая надежность обеспечивают им высокую популярность.

Недостатки:

  • ступенчатый характер регулирования;
  • заметные искажения формы синусоиды тока нагрузки при высоком входном напряжении из-за магнитного насыщения сердечника;
  • относительно слабая нагрузочная способность рабочих контактов реле;
  • высокий уровень акустического шума.

Электромеханические (сервоприводные)

Электромеханические или сервоприводные стабилизаторы устраняют один из основных недостатков стабилизаторов с механическими реле: обеспечение только ступенчатой регулировки выходного напряжения. Принцип их действия основан на изменении коэффициента трансформации. Оно реализовано с помощью щетки, соединенной с электродом выходных клемм. Щетку перемещает по вторичной обмотке тороидального трансформатора вспомогательный электродвигатель, рисунок 2.

Рисунок 2. Конструктивные особенности сервоприводного регулятора

Для электромеханических стабилизаторов характерны большой диапазон регулировки, небольшие габариты, малая стоимость.

Основные недостатки: низкое быстродействие, хорошо слышимый ночью шум работающего электродвигателя.

Инверторные (бесступенчатые, бестрансформаторные, IGBT, ШИМ)

Инверторные стабилизаторы реализуют двухступенчатую схему получения выходного напряжения. Сначала переменный входной ток преобразуют в постоянный, а затем из него вновь генерируют переменное напряжение. Автоматическое регулирование происходит на этапе формирования постоянного тока, здесь же реализованы функции ступени стабилизации.

Существует несколько вариантов каскадного преобразования, каждому из которых соответствует подкласс инверторных стабилизаторов. Наибольшее распространение получили ШИМ-устройства и стабилизаторы на IGBT-транзисторах.

Сильные стороны этого оборудования:

  • высокая скорость реакции на изменения входного напряжения, точность регулировки выходного;
  • хорошие массогабаритные характеристики (отсутствует силовой трансформатор);
  • простотой получения КПД выше 50 %;
  • возможность плавной регулировки выходного напряжения в сочетании с широкими пределами изменения выходного электрического тока, а также работы на холостом ходе;
  • эффективное подавление скачков напряжения и импульсных помех.

При применении надлежащей элементной базы инверторная техника нормально функционирует при отрицательных температурах.

Главный недостаток: плохая перегрузочная способность, в т.ч. кратковременная (не более 25 – 50% на протяжении 1 – 2 с). Последнее заставляет тщательно контролировать выходную мощность устройства при работе на реактивную нагрузку (электродвигатели различного назначения, вентиляторы и т.д.). Кроме того, следует принимать во внимание сложность электрической схемы, что увеличивает риски отказа, и высокую стоимость из-за необходимости применения силовой полупроводниковой элементной базы.

Феррорезонансные

Феррорезонансный стабилизатор – это устройство трансформаторного типа. Его характерная особенность – применение обмоток трансформатора, одетых на магнитопроводы разного поперечного сечения. Параллельно вторичной обмотке L2 подключен дополнительный конденсатор С, рисунок 3. Его емкость подобрана так, чтобы за счет резонанса обеспечивать постоянное насыщение магнитопровода вторичной обмотки. Отсюда большие изменения входного напряжения не приводят к колебаниям выходного.

Рисунок 3. Схема феррорезонансного стабилизатора

Стабилизатор имеет высокую скорость отработки скачков, обладает повышенной надежностью за счет отсутствия схем переключения, обеспечивает неплохую точность стабилизации.

Отсутствие механически подвижных компонентов позволяет эксплуатировать феррорезонансные стабилизаторы при небольших отрицательных температурах.

Главные недостатки:

  • меньший коэффициент мощности;
  • значительные нелинейные искажения выходного тока, которые могут привести к нарушениям функционирования ряда бытовых приборов, например, к искажениям изображения цветного телевизора и некачественному стиранию старых записей магнитофоном;
  • нестабильность функционирования при вариациях частоты входного напряжения более чем на 0,5 Гц от номинального значения, что нередко встречается при питании населенного пункта от автономной электростанции.

Электронные (симисторные, тиристорные)

Так называемые электронные стабилизаторы структурно повторяют устройства на электромагнитных реле, но для ступенчатых переключений обмоток авторансформатора использованы полупроводниковые изделия. Возможно несколько разновидностей таких электронных схем, каждая из которых осуществляет автоматическое переключение коэффициента трансформации. Серийно выпускаются стабилизаторы, в которых функции ключевых элементов ступенчатого регулирования возложены на симисторы и тиристоры.

Тиристор – это полупроводниковая структура с тремя p-n-переходами, в которой выполнена глубокая положительная обратная связь. Ее наличие обеспечивает высокую скорость переключения при работе в ключевой режиме. Симистор образован двумя тиристорами с объединенными управляющими электродами, включенными встречно-параллельно, рисунок 4. За счет возможности пропускания тока этим компонентом в двух направлениях симисторные стабилизаторы демонстрируют повышенный КПД. Это выгодно отличает их от тиристорных стабилизаторов.

Рис. 4. Принципиальная схема простейшего варианта симисторного регулятора

Общие преимущества:

  • повышенный коэффициент стабилизации;
  • прекрасное подавление перепадов напряжения, импульсных помех;
  • хорошие массогабаритные параметры;
  • высокая надежность при реализации на качественной элементной базе.

Кроме того, по быстродействию электронные стабилизаторы заметно превосходят свои релейные электромеханические аналоги, т.е. хорошо отрабатывают скачки напряжения.

Недостатки:

  • плохо адаптированы для работы с реактивной нагрузкой;
  • высокая стоимость;
  • сложность выполнения ремонта.

Виды стабилизаторов напряжения по классу напряжения

Промышленность выпускает широкую гамму стабилизаторов.

Различают однофазные и трехфазные устройства.

По диапазону выходных напряжений электронное оборудование для однофазных сетей рассчитано на 220 – 240 В (популярна также промежуточная градация 230 В), доступны феррорезонансные стабилизаторы на 110 – 120 В.

Бытовое оборудование для трехфазных электросетей обеспечивает выходное напряжение 380 – 415 В вне зависимости от применяемых схемных решений и отдаваемого тока нагрузки.

Техника промышленного назначения может иметь более высокое выходное напряжение: вплоть до 6 – 10 кВ.

Походы к выбору стабилизатора

Перечень параметров, по которым выбирают стабилизаторы, обязательно включает:

  • мощность нагрузки или отдаваемый номинальный ток;
  • выходное напряжение;
  • тип сети (однофазная – трехфазная).

Большую помощь окажет информация о стабильности сети, уровне импульсных помех в ней.

При определении номинальной мощности суммируют мощности всех потребителей защищаемой сети. Для оценки мощности номинальной нагрузки токовую нагрузочную способность входного автомата умножают на 220 В.

При прочих равных условиях выбирают однофазные модели линейных стабилизаторов, учитывают, что модульные конструкции более удобны в обслуживании.

Учитывают эстетические параметры и количество выходных розеток, рисунок 5.

Рис.5. Вариант исполнения однофазного стабилизатора

Окончательный выбор целесообразно выполнять с учетом производителя и места изготовления. Для определения качества техники юго-восточного производства, выпускаемой без контроля со стороны ведущих западных компаний, имеет смысл изучить профильные форумы. Такой подход позволяет сделать адекватный вывод о качестве прибора.

Кроме технических параметров обязательно принимают во внимание доступность сервисного обслуживания.

Следует учесть, что в продаже имеется большой выбор 220-вольтовых однофазных и 380-вольтовых трехфазных устройств. Стабилизаторы с широким диапазоном регулировки и выходным напряжением других номиналов часто поставляются под заказ.

Заключение.

Промышленность выпускает широкую гамму бытовых стабилизаторов напряжения, что позволяет произвести  выбор конкретной модели устройства с учетом конкретной области применения.

Массовый характер рынка стабилизаторов определяет большое количество работающих на нем производящих предприятий, предлагающих свою продукцию через партнерскую сеть. Поэтому перед покупкой следует выполнить тщательный многокритериальный отбор продукта.

Видео по в дополнение статьи

www.asutpp.ru

Как выбрать однофазный стабилизатор напряжения сети для дома: главные критерии, особенности и типы стабилизирующих устройств

В сетях энергоснабжения может применяться однофазное или трёхфазное напряжение. Трёхфазное напряжение 380В используется на производстве, а однофазное 220В повсеместно применяется в быту. На это напряжение рассчитана практически вся бытовая техника и электроника.

Приборы, используемые в быту, могут быть критичны к броскам или «плаванию» напряжения сети. Чтобы избежать негативных последствий от такого электроснабжения, бытовая техника подключается через однофазный стабилизатор напряжения.

Особенности однофазного стабилизатора

Стабилизатор напряжения, работающий в однофазной сети, применяется для коррекции напряжения при изменениях его в определённых пределах. В однофазной сети энергоснабжения используется только два провода, один из которых фаза, а второй – ноль, поэтому электрические схемы стабилизаторов достаточно просты.

Схема контроля постоянно фиксирует уровень напряжения сети и в случае отклонения подаёт команду на исполнительный механизм, который увеличивает или уменьшает его величину. В результате работы стабилизирующего устройства на выходе возникает напряжение, подходящее для корректной работы потребителей.

Чтобы на выход прибора не попадали импульсные помехи и высоковольтные короткие выбросы, все типы стабилизаторов имеют в составе схемы индуктивно-ёмкостной фильтр, подавляющий эти компоненты.

Однофазные стабилизаторы широко применяются на следующих объектах:

  • Жилые квартиры;
  • Частные загородные дома;
  • Медицинские учреждения;
  • Системы связи и телекоммуникаций;
  • Офисы;
  • Небольшие производственные мощности.

В условиях больших городов энергоснабжение жилых районов почти всегда отличается хорошим качеством напряжения сети. Другое дело посёлки городского типа или загородные территории. Там напряжение сети часто бывает нестабильным, что заставляет жильцов приобретать домашние стабилизаторы напряжения. Это касается и медицинских учреждений, где для работы специальной аппаратуры требуется очень качественная сеть.

Стабильная и надёжная сеть требуется предприятиям обеспечивающим связь, системы кабельного телевидения и интернет. На небольших частных предприятиях, где используется техника, питающаяся от однофазной сети, используются выравнивающие приборы с мощностью 10-30 кВт.

Виды однофазных стабилизаторов

Промышленность выпускает модели стабилизаторов, в которых используются различные исполнительные механизмы выравнивающие напряжение сети:

  • Релейные устройства;
  • Электродинамические (сервоприводные) стабилизаторы;
  • Полупроводниковые приборы.

Во всех трёх типах стабилизаторов используется принцип изменения напряжения с помощью трансформатора.

Релейный стабилизатор состоит из следующих элементов:

  • Индуктивно-ёмкостной фильтр подавления помех;
  • Электронная плата;
  • Силовой трансформатор;
  • Электромагнитные реле;
  • Схема защиты;
  • Устройство индикации.

Устройством, регулирующим напряжение, в данном приборе является силовой трансформатор, который ещё называют катушкой вольтодобавки. Напряжение сети приходит на индуктивно-ёмкостной фильтр и далее на первичную обмотку  трансформатора.

Вторичная обмотка имеет большее число витков для возможного увеличения напряжения, когда его величина снижается до минимума. Обмотка выполнена в виде отдельных секций.

Электронная плата включает в себя микроконтроллер, который оценивает величину напряжения сети. Пока его величина остаётся в допуске регламентированным государственным стандартом (220В ± 10%), потребитель получает питание непосредственно от сети. Если величина напряжения вышла из допуска происходит следующее. Контроллер определяет величину девиации напряжения и даёт команду на блок реле, которые своими контактами подключает секцию обмотки для повышения или уменьшения напряжения сети. Релейный стабилизатор является самым недорогим устройством.

Он имеет следующие недостатки:

  • Большое время переключения;
  • Искажённую синусоиду на выходе;
  • Дискретные величины напряжения, то есть низкую точность.

Электромеханический или сервоприводной стабилизатор обеспечивает регулирование напряжения за счёт скользящего контакта, который перемещается по неизолированной обмотке трансформатора. Трансформатор имеет тороидальную форму. В центре конструкции установлен серводвигатель, на роторе которого находится графитовый контакт. При отклонении напряжения сети от номинала, микроконтроллер даёт команду на поворот ротора, что позволяет увеличить или уменьшить поступающее напряжение.

Электромеханический стабилизатор обеспечивает самую высокую точность установки. Она может достигать 2-3%. Прибор допускает большой диапазон напряжения на входе и перегрузки по мощности, которые в непродолжительном  режиме могут достигать 120%.

Вместе с тем стабилизатор с электродвигателем обладает серьёзными недостатками:

  • Самая медленная скорость реагирования на девиацию;
  • Низкая надёжность;
  • Необходимость в техническом обслуживании;
  • Постоянный шум от работающего электродвигателя.

Несмотря на недостатки, однофазные динамические стабилизаторы находят широкое применение в самых разных областях.

Стоимость полупроводниковых стабилизаторов превышает цену предыдущих моделей. Их устройство практически не отличается от конструкции релейных стабилизаторов, и в них используются те же элементы, только вместо электромагнитных реле в данных приборах применяются силовые полупроводниковые вентили. Это многослойные элементы – тиристоры и симисторы. Каждый из них имеет три электрода – анод, катод и управляющий электрод.

Поскольку они по аналогии с диодами пропускают ток только в одном направлении, в качестве ключа в цепи переменного тока может использоваться один симистор (симметричный тиристор) или два тиристора во встречно параллельном включении, когда анод одного прибора соединён с катодом другого, а управляющие электроды объединены.

Однофазный тиристорный стабилизатор напряжения обладает высокой скоростью реагирования на изменения сетевого напряжения. Полупроводниковые приборы допускают эксплуатацию в холодных помещениях при низких температурах. Прибор очень надёжен, поскольку полупроводниковые ключи, в отличие от электромагнитных реле, не имеют подгорающих контактов и допускают до 109, то есть миллиард переключений.

Но вместе с тем прибор имеет ряд недостатков, которые ограничивают его применение:

  • Дискретная величина напряжения;
  • Аппроксимированная синусоида на выходе;
  • Негативная реакция на перегрузку.

Как и у релейного стабилизатора, величина напряжения на выходе изменяется ступенями, поэтому точность установки достаточно низкая и может достигать 6-8 %. Тиристорные ключи вносят сильные изменения в форму тока на выходе. Это может быть ступенчатая синусоида или меандр.

Стабилизаторы с силовыми полупроводниковыми вентилями плохо выдерживают перегрузку. В этом отношении однофазный симисторный стабилизатор напряжения гораздо хуже тиристорного устройства, поэтому приборы для коррекции напряжения на симметричных тиристорах применяются крайне редко.

Критерии выбора стабилизатора для однофазной сети

Существует ряд параметров, по которым осуществляется выбор стабилизатора напряжения:

  • Выходная мощность;
  • Скорость коррекции;
  • Точность установки;
  • Диапазон входного напряжения;
  • Функция «Байпас»;
  • Вариант исполнения.

Мощность стабилизатора можно считать самым важным параметром. Она определяет, какое количество бытовой техники может быть подключено. Ориентироваться можно на приблизительную таблицу мощности бытовой техники:

  • LCD телевизор – 100-200 W;
  • Стиральная машина – 1 500-2 500 W;
  • Холодильник – 200-300 W;
  • Персональный компьютер – 100-200 W;
  • Система отопления с циркуляционным насосом – 150-200 W;
  • Освещение – 500 W.

Сюда можно добавить электрическую плиту, если она имеется, видеонаблюдение,  охранную сигнализацию и приборы разового подключения, такие как утюг, фен, миксер, тостер и так далее. Таким образом, мощность однофазного стабилизатора для качественной работы всей бытовой техники в частном доме должна составлять не менее 5 кВт.

По скорости корректирования, лидирующее место отводится тиристорным стабилизаторам, а медленнее всего работают электродинамические устройства с сервоприводом. Их нельзя использовать при работе с техникой, которая критична даже к небольшим перерывам в электроснабжении. Но эти стабилизаторы обеспечивают высокую точность установки.

С другой стороны стандарт отечественной сети допускает ± 10% отклонения от величины 220В, поэтому точность в 1-3% не очень и востребована. Современные стабилизаторы различных типов обеспечивают достаточно широкий диапазон напряжения на входе, поэтому отличия у отдельных моделей не слишком значительны.

Практически все модели оснащены функцией «Байпас» или обход. При напряжении сети не выходящем за пределы допуска, потребитель получает электропитание от сети напрямую, минуя стабилизатор. Большее отклонение сети определяется платой контроля, и нагрузка автоматически переключается на выход стабилизирующего устройства.

Стабилизатор от компании «Энергия

Однофазный стабилизатор напряжения «Энергия» Voltron РСН 8 000 представляет собой  прибор, рассчитанный для работы с потребителями большой мощности.

Стабилизатор выполнен по релейной схеме с семью ступенями регулировки и обеспечивает на выходе 220 В ± 10 %. Диапазон нагрузок от 5 600 до 8 000 Вт.

Устройство выдаёт ровную синусоиду, что позволяет использовать его при работе с реактивной нагрузкой, к которой относятся асинхронные электродвигатели насосов отопления.

Скорость переключения не превышает 10 мс. Стабилизатор допускает кратковременную перегрузку до 150 %. Рабочее напряжение 105-265 В. При напряжениях  95 и 280 В, срабатывает система защиты. Данный стабилизатор однофазного типа оборудован функцией «Байпас» и сегментным светодиодным индикатором параметров. Максимальный ток нагрузки устройства составляет 36 А.

voltobzor.ru

Выбор однофазного стабилизатора напряжения: виды, особенности и характеристики

Любая электрическая сеть состоит из нескольких фаз и нуля. Число фаз может варьироваться от одной до трёх. В жилых домах обычно используется однофазная электрическая сеть. Трёхфазное электропитание используется в основном на промышленных объектах.

В тех случаях, когда в домашних условиях нужно получить качественное по всем параметрам напряжение, можно применить однофазный стабилизатор напряжения. Однофазный стабилизатор предназначен для нормализации напряжения в условиях изменения его в некоторых пределах. Однофазная сеть предполагает большой выбор моделей стабилизаторов различных конструкций.

Содержание:

Особенности однофазного стабилизатора

Поскольку однофазная сеть предполагает наличие только двух проводных линий (фаза и ноль), устройство, предназначенное для её нормализации, не отличается сложностью конструкции. Схема контроля определяет величину поступающего напряжения и его отклонение от номинального значения. Затем, в зависимости от конструкции прибора, осуществляется изменение этого напряжения в положительную или отрицательную сторону. В результате на выходе устройства появляется величина, обеспечивающая нормальную работу бытовых устройств и электронной аппаратуры.

Однофазные стабилизаторы могут использоваться на следующих объектах:

  • Жилые квартиры;
  • Загородные дома;
  • Офисные и административные помещения;
  • Производственные предприятия.

Эти устройства выпускаются на различные мощности, что  определяет их сферу применения. Стабилизаторы мощностью до 1000Вт используются для питания бытовой техники, которая представляет собой активную нагрузку. Для обеспечения работы электротехнических устройств с большими пусковыми токами применяются однофазные стабилизаторы, имеющие мощность в пределах 1500-10 000 Вт. Более мощные приборы, до 100 кВт, применяются в условиях промышленных предприятий. Однофазный стабилизатор напряжения на 5 кВт способен обеспечить всю электротехнику загородного дома или, включая погружной насос артезианской скважины и систему полива растений. Также они широко используются в качестве стабилизатора напряжения для дачи.

Типы стабилизаторов

В зависимости от принципа действия, стабилизаторы осуществляют нормализацию напряжения разными способами.

В бытовых условиях применяются следующие типы однофазных стабилизаторов:

  • Сервоприводные;
  • Релейные;
  • Тиристорные.

Сервоприводный

Стабилизатор напряжения с сервоприводом представляет собой обычный автотрансформатор с механической регулировкой напряжения. По обмотке трансформатора перемещается скользящий контакт, закреплённый на роторе серводвигателя. Величину угла поворота ротора задаёт схема контроля напряжения. При низком напряжении трансформатор работает как повышающий, а при высоком напряжении как понижающий. В результате на выходных клеммах устройства получается напряжение точно соответствующее номинальному – 220В.

Устройство стоит недорого и обеспечивает высокую точность установки. Основным недостатком электромеханического стабилизатора является его низкая скорость отработки скачков напряжения и шум от работы серводвигателя. Из-за того, что щётки загрязняются, срабатываются и обгорают, такой стабилизатор требует регулярного технического обслуживания.

Релейный

Релейный стабилизатор так же имеет в своей конструкции автотрансформатор. Но вместо плавной регулировки напряжения, это устройство может обеспечить только дискретное изменение напряжения на выходе. Это обусловлено особенностью конструкции. Изменение напряжения на выходе, осуществляется переключением обмоток трансформатора с помощью реле. Причём, чем большее количество реле используется в схеме устройства, тем большую точность можно получить. Несмотря на это добиться идеальной точности с помощью такого устройства, практически невозможно. К достоинствам прибора релейного типа можно отнести хорошую скорость реакции на изменения входного напряжения, а недостатком его является малая точность и щелчки реле во время работы.

Тиристорный

Принцип работы полупроводниковых стабилизаторов основан на переключении обмоток трансформатора с помощью ключей, которые выполнены не на реле, а на полупроводниковых многослойных приборах – тиристорах или симисторах. Однофазный тиристорный стабилизатор напряжения обладает минимальным временем переключения, способен выдерживать большие токи и сам потребляет мало энергии из-за отсутствия индуктивных нагрузок, таких как обмотки трансформатора или катушки реле. Тиристорные стабилизаторы рекомендуются для стабилизации напряжения при подключении особо чувствительной техники, например, для газовых котлов.

Устройство может работать при отрицательных температурах, поэтому используется в неотапливаемом помещении. Разновидностью электронного стабилизатора является однофазный симисторный стабилизатор напряжения. В отличие от тиристора, этот симметричный полупроводниковый прибор пропускает ток в двух направлениях, поэтому для построения электронного ключа требуется один симистор, заменяющий два тиристора. Достоинства прибора – малые габариты бесшумность и  высокая скорость переключения. Основной недостаток симисторного прибора – это неспособность выдерживать броски напряжения, что ограничивает его применение при работе с реактивной нагрузкой.

Характеристики стабилизаторов и критерии выбора

Основные характеристики стабилизаторов, независимо от их конструкции, полностью совпадают и отличаются только величинами.

Это следующие параметры:

  • Мощность;
  • Скорость выравнивания напряжения;
  • Точность установки;
  • Допустимый разброс напряжения на входе.

Мощность. Требуемая мощность стабилизирующего устройства выбирается в зависимости от  мощности всех потребителей, которые будут подключены к устройству. Самое главное при этом правильно подсчитать эту мощность учитывая активную и реактивную нагрузки. Элементы освещения, электрического отопления, электроплиты, духовки и чайники относятся к активной нагрузке. Если к нормализатору напряжения будут подключены только такие приборы, то для определения нужной мощности стабилизирующего устройства достаточно суммировать мощность всех потребителей и прибавить 20%.

К реактивной нагрузке относится вся техника, работающая с использованием электродвигателей. Это стиральные и посудомоечные машины, холодильники, электроинструмент и насосы систем водоснабжения и отопления. Для определения мощности таких устройств нужно их мощность в ваттах разделить на косинус фи (Cos ϕ). Чтобы не искать этот косинус в технической документации проще всего тепловую мощность разделить на коэффициент 0,7. Кроме того электродвигатели в момент пуска кратковременно потребляют дополнительную мощность, которая может превышать рабочую примерно в три раза.

Например, для определения мощности погружного насоса «Джилекс», который качает воду с глубины 9 метров, даёт 6 м3 воды в час и имеет мощность 400 Вт, потребуется стабилизатор:

(400/0,7*3) = 1714 Вт

Скорость срабатывания. Не менее важным параметром является скорость выравнивания напряжения. Самой низкой скоростью реакции обладает динамический или сервоприводный стабилизатор. От возникновения скачка напряжения до установки номинала может пройти до трёх секунд. Если бросок напряжения слишком большой, то за этот промежуток времени вся электронная техника успеет выйти из строя. Поэтому, несмотря на отличную точность установки, этот прибор нецелесообразно применять в условиях нестабильной сети с частыми и большими скачками напряжения.

Релейный и электронный стабилизаторы реагируют на изменения напряжения, практически одинаково, но релейный стоит дешевле, зато тиристорный абсолютно бесшумен.

Точность. Самая высокая точность установки напряжения на выходе обеспечивается у инверторного и динамического стабилизатора. Электронный и релейный стабилизаторы изменяют величину напряжения ступенями, поэтому точной величины 220 вольт у них получить невозможно. Напряжение на выходе всегда будет чуть больше или чуть меньше номинального,  но эта величина всегда находится в допуске, который регламентируется ГОСТ.

Входное напряжение. Стандарт бытовой сети 220 вольт допускает отклонение от номинала не более чем на 10%. Если напряжение укладывается в эти пределы, то никакой стабилизатор не нужен. На практике, напряжение сети в неблагополучных регионах может изменяться от 140 до 270В и даже больше. Поэтому при выборе стабилизатора следует обязательно учитывать минимальные и максимальные величины напряжения, так как разные модели стабилизаторов имеют свой допустимый разброс по входу, который указан в документации на устройство.

Прочие параметры. Среди дополнительных характеристик можно учесть шум, который присутствует при работе сервоприводного и релейного стабилизаторов и полностью отсутствует в электронных системах, а так же форму напряжения на выходе. Если подключаемая нагрузка требует для своей работы гладкой синусоиды, то именно этот параметр будет являться определяющим при выборе устройства.

Хорошо если однофазный стабилизатор напряжения, оборудован системой байпас (bypass) – обход. Это означает, что когда напряжение сети в норме, то потребитель получает его напрямую, минуя стабилизатор, который подключается в цепь при отклонении величины от номинала.

Стабилизаторы могут устанавливаться на полу или крепиться к стене. Варианты исполнения зависят от габаритов устройства. Если стабилизатор будет эксплуатироваться в неотапливаемом помещении, необходимо уточнить его температурные характеристики.

Мощный однофазный стабилизатор

Однофазный стабилизатор напряжения «Энергия Voltron РСН-8000» относится к релейной системе управления напряжением. Устройство предназначено для работы с мощными нагрузками, к которым может относиться сварочная аппаратура, поскольку стабилизатор выдерживает  ток до 36А.

Предельные величины напряжения на входе варьируются от 98 до 280 вольт, и это очень хороший показатель. Семиступенчатый релейный блок обеспечивает быстрое время переключения – не более 10 мс. Стабилизатор Энергия оборудован системой «Байпас» и имеет защиту от перегрузки, короткого замыкания и выхода напряжения за предельно допустимые величины на входе.

Понравилась статья? Поделись с друзьями в соц сетях!

nabludaykin.ru

Какой стабилизатор напряжения лучше: релейный или электромеханический

У многих в квартире были перебои с напряжением в электрической сети. В это время могут сгореть несколько ламп освещения, может выйти из строя стиральная машина или компьютер. Выход из такой ситуации напрашивается один – приобрести и установить стабилизатор напряжения.

Основным критерием выбора домашнего стабилизатора является мощность прибора. Ее величина должна быть выше суммарной мощности всех ваших бытовых приборов. Стабилизатор напряжения – это прибор, который корректирует параметры электрической энергии до номинальных значений при значительных колебаниях питания в сети.

Виды стабилизаторов

Чтобы разобраться и сделать оптимальный выбор стабилизатора, необходимо рассмотреть наиболее популярные виды стабилизаторов и их особенности.

Релейный стабилизатор напряжения

Сегодня невозможно представить квартиру, в которой не было бы бытовой техники. Каждое устройство требует защиты от перепадов напряжения в бытовой сети. Одним из таких приборов защиты является релейный стабилизатор напряжения.

Благодаря такому прибору можно создать комфортные условия работы электрических устройств. Уровень напряжения в номинальном режиме должен составлять 220 В. Релейный вид стабилизатора встречается во многих областях. Это популярный вид защитного прибора, так как имеет простое устройство.

Конструктивные особенности

Перед применением прибора требуется изучить, как он устроен и работает. Релейный стабилизатор включает в себя автотрансформатор и схему электронных элементов, управляющих его действием. В корпусе кроме этого имеется реле. Стабилизатор релейного типа считается повышающим, так как при пониженном напряжении прибор осуществляет повышение напряжения.

Возрастание напряжения будет осуществляться путем подключения дополнительной обмотки. Чаще всего в трансформаторе есть 4 обмотки. При превышении напряжения в сети стабилизатор снижает излишнее напряжение. Схема стабилизатора релейного типа состоит из:

  1. Повышающий трансформатор.
  2. Управляющий микроконтроллер.
  3. Реле.

Это основные элементы релейного стабилизатора. Также устройство может содержать вспомогательные элементы, например, дисплей.

Принцип действия

Разберемся в процессе функционирования стабилизатора релейного типа. Электронная система измеряет параметры входящей электроэнергии. После считывания данных прибор сравнивает эти параметры с величинами номинального режима.

Прибор автоматически производит подключение необходимой обмотки трансформатора для достижения нужных параметров сети. Работа релейного стабилизатора довольно простая. Прибор регулирует параметры сети по ступеням, в результате чего при очередной ступени напряжение изменяется на конкретную величину. Бывают ситуации, когда уровень напряжения не соответствует норме даже после корректировки. Такие ступенчатые регулировки могут также вызвать перепады напряжения.

Если подробно разобраться в принципе действия, то можно понять, что прибор быстро выбирает нужные обмотки. Такие ступенчатые скачки параметров считаются незначительными. Они станут заметнее, если на входе будут наблюдаться подобные скачки напряжения. При подключении к сети высокочувствительных устройств при сильных перепадах напряжения устройства выйдут из строя.

Недобросовестные производители могут запрограммировать стабилизатор таким образом, что на его дисплее всегда будет показывать значение 220 В.

Чаще всего релейный стабилизатор справляется с перепадами сети за 0,15 с. Такой прибор может отключить питание выходным током, когда на входе возникли значения тока наименьшего допустимого значения. После нормализации напряжения прибор снова подключится к работе. Напряжение восстанавливается за 0,6 с.

Достоинства

Основными преимуществами релейной модели стабилизатора можно назвать:

  1. Малые габаритные размеры, так как трансформатор имеет только функцию повышения напряжения.
  2. Большой интервал значений напряжения.
  3. Значительный диапазон рабочих температур. Многие приборы нормально работают при температуре -40 +40 градусов.
  4. Низкий уровень шума.
  5. Допускается перегрузка до 110%.

Многие изготовители приборов утверждают, что их продукция способна функционировать много лет.

Недостатки

В работе релейных моделей стабилизаторов есть недостатки, которые обусловлены его методом работы, схемой прибора. Слабым звеном его конструкции считается реле. Если изготовитель установил некачественное реле, то оно может стать причиной неисправности прибора. Также при переключении режимов возникают щелчки и шумы.

Другим значимым недостатком является ступенчатое действие устройства выравнивания напряжения. При переключении с одной обмотки на другую напряжение может значительно изменяться, образуя некоторые скачки.

Недорогие модели имеют слабую мощность, которая не больше 30% от мощности бытовых устройств.

Правила пользования стабилизатором

При вашем выборе релейного типа стабилизатора, необходимо регулярно проводить его обслуживание, в том числе ежегодно тщательно его осматривать внутри корпуса. При осмотре нужно обращать внимание на:

  • Надежность крепления соединений проводников.
  • Уровень охлаждения и циркуляции воздуха в корпусе прибора.
  • Имеются ли повреждения.
  • Точность работы указателей измерения.

При обнаружении слабых соединений, пыли, необходимо выключить из сети стабилизатор и произвести его обслуживание, очистив его и затянув все крепления контактов. Помещение, в котором находится стабилизатор напряжения, должно проветриваться и быть сухим. Влажность в помещении не должна быть более 80%. При работе в корпусе стабилизатора отверстия для вентиляции должны иметь доступ воздуха.

Электромеханический стабилизатор

Ни для кого не секрет, что бытовые сети питания сегодня не могут обеспечить стабильную эксплуатацию электрических устройств в доме. Перепады и скачки напряжения вполне можно ожидать от сети питания. Для решения этих задач как нельзя лучше подходит электромеханический вид стабилизатора напряжения, так как он стал наиболее популярным на рынке бытовых приборов защиты.

Этот прибор является повышающим трансформатором, который самостоятельно осуществляет регулировку напряжения в сети, в отличие от релейного стабилизатора.

Классификация

Основным критерием деления на классы электромеханических стабилизаторов стали параметры напряжения. Приборы бывают 1-фазными и 3-фазными. Первые применяются чаще в частных постройках и офисах, а трехфазные модели в больших организациях, в промышленности. На сегодняшний день у людей есть возможность строительства больших домов, коттеджей, в которых находится множество бытовых устройств, которые требуют защиты от перепадов напряжения сети.

По конструктивному исполнению стабилизаторы бывают настенными, напольными, настольными. Крепиться могут в любых положениях.

Другим фактором является мощность прибора. Сейчас изготовители предлагают большой выбор моделей. Имеются маломощные приборы до 500 кВА, а также повышенной мощности до 20000 кВА. Нужно сказать, что устройства на 220 и 380 В имеют отличия в числе трансформаторов, расположенных в корпусе устройства.

Преимущества:

  • Широкий интервал напряжения входа.
  • Повышенная точность выхода.
  • Не чувствителен к рабочей частоте.
  • Отсутствие шума.

Недостатки:

  • Присутствуют движущиеся части.
  • Необходимость периодической замены щеточного блока.
  • При снижении напряжения до 180 В, нет гарантии нормальной работы.
  • 1-фазные модели не могут работать при пониженной температуре.
  • Малая скорость работы.

Советы по выбору стабилизатора

При выборе учитывайте следующие факторы:

  1. Модель стабилизатора по числу фаз сети. Если в вашей трехфазной сети работают 1-фазные устройства, то для защиты от перепадов напряжения лучше применять три отдельных однофазных стабилизатора.
  2. Мощность прибора. При определении этого параметра нужно учесть, что некоторые устройства имеют асинхронные двигатели, у которых высокие пусковые токи.
  3. Точность стабилизации для защиты бытовых устройств, его быстродействие.
  4. Наличие вспомогательных функций.
  5. Условия работы прибора.
  6. При выборе прибора необходимо учесть схему разводки проводов цепи питания.

Сравнение релейного и тиристорного стабилизатора

(5 оценок, среднее: 3,20 из 5)

ostabilizatore.ru

Стабилизатор напряжения: как работает, зачем нужен, типы и применение

В статье расскажем что такое стабилизатор напряжения, применение, как работает и его различные типы с принципиальными схемами, а также мы поможем вам в выборе стабилизатора напряжения.

Применение стабилизаторов напряжения стало необходимостью для каждого дома. Различные типы стабилизаторов напряжения доступны в настоящее время с различными функциями и работами. Последние достижения в технологии, такие как микропроцессорные чипы и силовые электронные устройства, изменили стабилизаторы напряжения. Теперь они полностью автоматические, интеллектуальные и оснащены множеством дополнительных функций. Они также имеют сверхбыструю реакцию на колебания напряжения и позволяют своим пользователям дистанционно регулировать требования к напряжению, включая функцию пуска или выключения.

Что такое стабилизатор напряжения

Стабилизатор напряжения — это электрическое устройство, которое используется для подачи постоянного напряжения на нагрузку на своих выходных клеммах независимо от каких-либо изменений или колебаний на входе, то есть входящего питания.

Основное назначение стабилизатора напряжения заключается в защите электрических или электронных устройств (например, кондиционера, холодильника, телевизора и так далее) от возможного повреждения в результате скачков напряжения или колебаний, повышенного или пониженного напряжения.

Рис.1 — Различные типы стабилизаторов напряжения

Стабилизатор напряжения также известен как AVR (автоматический регулятор напряжения). Использование стабилизатора напряжения не ограничивается домашним или офисным оборудованием, которое получает электропитание извне. Даже места, которые имеют свои собственные внутренние источники питания в виде дизельных генераторов переменного тока, сильно зависят от этих AVR для безопасности своего оборудования.

Мы можем увидеть различные типы стабилизаторов напряжения, доступных на рынке. Аналоговые и цифровые автоматические стабилизаторы напряжения доступны от многих производителей. Благодаря растущей конкуренции и повышению осведомленности о безопасности устройств. Эти стабилизаторы напряжения могут быть однофазными (выход 220-230 вольт) или трехфазными (выход 380/400 вольт) в зависимости от типа применения. Регулирование желаемой стабилизированной мощности осуществляется методом понижения и повышения напряжения в соответствии с его внутренней схемой. Трехфазные стабилизаторы напряжения доступны в двух разных моделях, то есть моделях с сбалансированной нагрузкой и моделях с несбалансированной нагрузкой.

Они доступны в различных рейтингах и диапазонах КВА. Стабилизатор напряжения нормального диапазона может обеспечить стабилизированное выходное напряжение 200-240 вольт с усилением 20-35 вольт при питании от входного напряжения в диапазоне от 180 до 270 вольт. Принимая во внимание, что широкий диапазон стабилизатора напряжения может обеспечить стабилизированное напряжение 190-240 вольт с повышающим сопротивлением 50-55 вольт при входном напряжении в диапазоне от 140 до 300 вольт.

Они также доступны для широкого спектра применений, таких как специальный стабилизатор напряжения для небольших устройств, таких как телевизор, холодильник, микроволновые печи, для одного огромного устройства для всей бытовой техники.

В дополнение к своей основной функции стабилизаторы текущего напряжения оснащены многими полезными дополнительными функциями, такими как защита от перегрузки, переключение нулевого напряжения, защита от изменения частоты, отображение отключения напряжения, средство запуска и остановки выхода, ручной или автоматический запуск, отключение напряжения и так далее.

Стабилизаторы напряжения являются очень энергоэффективными устройствами (с эффективностью 95-98%). Они потребляют очень мало энергии, которая обычно составляет от 2 до 5% от максимальной нагрузки.

Зачем нужны стабилизаторы напряжения и его важность

Все электрические устройства спроектированы и изготовлены для работы с максимальной эффективностью с типичным источником питания, который известен как номинальное рабочее напряжение. В зависимости от расчетного безопасного предела эксплуатации рабочий диапазон (с оптимальной эффективностью) электрического устройства может быть ограничен до ± 5%, ± 10% или более.

Из-за многих проблем источник входного напряжения, которое мы получаем, всегда имеет тенденцию колебаться, что приводит к постоянно меняющемуся источнику входного напряжения. Это изменяющееся напряжение является основным фактором, способствующим снижению эффективности устройства, а также увеличению частоты его отказов.

Рис. 2 — Проблемы из-за колебаний напряжения

Помните, нет ничего более важного для электронного устройства, чем отфильтрованный, защищенный и стабильный источник питания. Правильное и стабилизированное напряжение питания очень необходимо, чтобы устройство выполняло свои функции наиболее оптимальным образом. Это стабилизатор напряжения, который обеспечивает то, что устройство получает желаемое и стабилизированное напряжение, независимо от того, насколько сильно колебание. Таким образом, стабилизатор напряжения является очень эффективным решением для тех, кто хочет получить оптимальную производительность и защитить свои устройства от непредсказуемых колебаний напряжения, скачков напряжения и шума, присутствующих в источнике питания.

Как и источник бесперебойного питания, стабилизаторы напряжения также являются активом для защиты электронного оборудования. Колебания напряжения очень распространены независимо от того, где вы живете. Могут быть различные причины колебаний напряжения, такие как электрические неисправности, неисправная проводка, молнии, короткие замыкания и так далее. Эти колебания могут быть в форме перенапряжения или пониженного напряжения.

Эффекты повторяющегося перенапряжения в бытовой технике

  • Необратимые повреждения подключенного устройства
  • Повреждения изоляции обмотки
  • Перебои в нагрузке
  • Перегрев кабеля или устройства
  • Ухудшится срок полезного использования устройства
  • Неисправность оборудования
  • Низкая эффективность устройства
  • Устройство в некоторых случаях может занять дополнительные часы, чтобы выполнить ту же функцию
  • Ухудшить производительность устройства
  • Устройство будет потреблять больше электричества, что может привести к перегреву

Как работает стабилизатор напряжения, принцип работы понижения и повышения напряжения

Основная работа стабилизатора напряжения заключается в выполнении двух необходимых функций: функции понижения и повышения напряжения. Функция понижения и повышения — это не что иное, как регулирование постоянного напряжения от перенапряжения. Эта функция может выполняться вручную с помощью селекторных переключателей или автоматически с помощью дополнительных электронных схем.

В условиях перенапряжения функция «понижения напряжения» обеспечивает необходимое снижение интенсивности напряжения. Аналогично, в условиях пониженного напряжения функция «повышения напряжения» увеличивает интенсивность напряжения. Идея обеих функций в целом заключается в том, чтобы поддерживать одинаковое выходное напряжение.

Стабилизация напряжения включает в себя сложение или вычитание напряжения из первичного источника питания. Для выполнения этой функции стабилизаторы напряжения используют трансформатор, который подключен к переключающим реле в различных требуемых конфигурациях. Немногие из стабилизаторов напряжения используют трансформатор, имеющий различные отводы на своей обмотке, для обеспечения различных коррекций напряжения, в то время как стабилизаторы напряжения (такие как Servo стабилизатор напряжения) содержат автоматический трансформатор для обеспечения желаемого диапазона коррекции.

Как работает функция понижения и повышения в стабилизаторе напряжения

Для лучшего понимания обеих концепций мы разделим его на отдельные функции.

Функция понижения в стабилизаторе напряжения

Рис. 4 — Принципиальная схема функции понижения в стабилизаторе напряжения

На приведенном выше рисунке показано подключение трансформатора в функции «Понижения». В функции понижения полярность вторичной катушки трансформатора подключается таким образом, что приложенное напряжение к нагрузке является результатом вычитания напряжения первичной и вторичной катушек.

В стабилизаторе напряжения есть схема переключения. Всякий раз, когда обнаруживается превышение напряжения в первичном источнике питания, подключение нагрузки вручную или автоматически переключается в конфигурацию режима «Понижения» с помощью переключателей (реле).

Функция повышения в стабилизаторе напряжения

Рис. 6 — Принципиальная схема функции повышения напряжения в стабилизаторе напряжения

На рисунке выше показано подключение трансформатора в функции «Повышения». В функции повышения полярность вторичной обмотки трансформатора подключается таким образом, что приложенное напряжение к нагрузке является результатом сложения напряжения первичной и вторичной обмоток.

Как конфигурация повышения и понижения работает автоматически

Вот пример 02 Stage Voltage Stabilizer. Этот стабилизатор напряжения использует 02 реле (реле 1 и реле 2) для обеспечения стабилизированного источника питания переменного тока для нагрузки в условиях перенапряжения и понижения напряжения.

На принципиальной схеме 02-ступенчатого стабилизатора напряжения (изображенного выше) реле 1 и реле 2 используются для обеспечения конфигурации понижения и повышения во время различных условий колебаний напряжения, то есть перенапряжения и пониженного напряжения. Например — предположим, что вход переменного тока 230 В переменного тока, а требуемый выход также постоянный 230 В переменного тока. Теперь, если у вас есть +/- 25 Вольт понижения & повышения стабилизация, это означает, что ваш стабилизатор напряжения может обеспечить вам постоянное требуемое напряжение (230 В) в диапазоне от 205 В (пониженное напряжение) до 255 В (повышенное напряжение) входного источника переменного тока.

В стабилизаторах напряжения, в которых используются трансформаторы с отводом, точки ответвления выбираются на основе требуемого количества напряжения, которое должно быть подавлено или повышено. В этом случае у нас есть разные диапазоны напряжения для выбора. Принимая во внимание, что в стабилизаторах напряжения, в которых используются автотрансформаторы, серводвигатели вместе со скользящими контактами используются для получения необходимого количества напряжения, которое необходимо стабилизировать или повысить. Скользящий контакт необходим, поскольку автотрансформаторы имеют только одну обмотку.

Различные типы стабилизаторов напряжения

Первоначально на рынке появились ручные / селекторные переключатели напряжения. В этих типах стабилизаторов используются электромеханические реле для подбора желаемого напряжения. С развитием технологий появились дополнительные электронные схемы и стабилизаторы напряжения стали автоматическими. Затем появился Servo стабилизатор напряжения, который способен стабилизировать напряжение непрерывно, без какого-либо ручного вмешательства. Теперь также доступны стабилизаторы напряжения на базе микросхем / микроконтроллеров, которые также могут выполнять дополнительные функции.

Стабилизаторы напряжения можно разделить на три типа:

  • Стабилизаторы напряжения типа реле
  • Servo стабилизаторы напряжения
  • Стабилизаторы статического напряжения

Стабилизаторы напряжения типа реле

В релейных стабилизаторах напряжения напряжение регулируется переключающими реле. Реле используются для подключения вторичного трансформатора в различных конфигурациях для достижения функции понижения и повышения.

Как работает релейный стабилизатор напряжения

Рисунок выше показывает, как стабилизатор напряжения типа реле выглядит изнутри. Он имеет трансформатор с ответвлениями, реле и электронную плату. Печатная плата содержит схему выпрямителя, усилитель, микроконтроллер и другие вспомогательные компоненты.

Электронные платы выполняют сравнение выходного напряжения с источником опорного напряжения. Как только он обнаруживает любое увеличение или уменьшение входного напряжения выше эталонного значения, он переключает соответствующее реле для подключения требуемого постукивания для функции понижения и повышения.

Стабилизаторы напряжения релейного типа обычно стабилизируют входные колебания на уровне ± 15% с точностью на выходе от ± 5% до ± 10%.

Использование и преимущества релейных стабилизаторов напряжения

Этот стабилизатор в основном используется для приборов / оборудования с низким номинальным энергопотреблением в жилых / коммерческих / промышленных целях.

  • Они стоят дешевле
  • Они компактны по размеру

Недостатки релейных стабилизаторов напряжения

  • Их реакция на колебания напряжения немного медленнее по сравнению с другими типами стабилизаторов напряжения
  • Они недолговечны
  • Они менее надежны
  • Они не способны выдерживать скачки напряжения, так как их предел допуска на колебания меньше
  • При стабилизации напряжения переход тракта электропитания может обеспечить незначительное прерывание электропитания

Серво стабилизаторы напряжения

В servo стабилизаторах напряжения регулирование напряжения осуществляется с помощью серводвигателя. Они также известны как сервостабилизаторы. Это замкнутые системы.

Как работает серво стабилизатор напряжения?

В системе замкнутого контура отрицательная обратная связь (также известная как ошибка подачи) гарантируется от выхода, чтобы система могла гарантировать, что был достигнут желаемый результат. Это делается путем сравнения выходных и входных сигналов. Если в случае, если желаемый выход превышает / ниже требуемого значения, то регулятором источника входного сигнала будет получен сигнал ошибки (Выходное значение — Входное значение). Затем этот регулятор снова генерирует сигнал (положительный или отрицательный в зависимости от достигнутого выходного значения) и подает его на исполнительные механизмы, чтобы привести выходное значение к точному значению.

Благодаря свойству замкнутого контура стабилизаторы напряжения на основе сервоприводов используются для приборов / оборудования, которые очень чувствительны и нуждаются в точном входном питании (± 01%) для выполнения намеченных функций.

Рис. 10 — Внутренний вид серво стабилизатора напряжения

Рисунок выше показывает, как серво стабилизатор напряжения выглядит изнутри. Он имеет серводвигатель, автотрансформатор, трансформатор понижения и повышения, двигатель, электронную плату и другие вспомогательные компоненты.

В стабилизаторе напряжения на основе сервопривода один конец первичной обмотки трансформатора понижения и повышения (отвод) подключен к фиксированному ответвлению автотрансформатора, а другой конец первичной обмотки соединен с подвижным рычагом, который контролируется серводвигателем. Один конец вторичной катушки трансформатора понижения и повышения подключен к входному источнику питания, а другой конец подключен к выходу стабилизатора напряжения.

Электронные платы выполняют сравнение выходного напряжения с источником опорного напряжения. Как только он обнаруживает любое увеличение или уменьшение входного напряжения выше контрольного значения, он начинает работать с двигателем, который еще больше перемещает рычаг на автотрансформаторе.

При перемещении рычага на автотрансформаторе входное напряжение на первичной обмотке трансформатора понижения и повышения изменится на требуемое выходное напряжение. Серводвигатель будет продолжать вращаться, пока разность между значением опорного напряжения и выход стабилизатора становится равным нулю. Этот полный процесс происходит за миллисекунды. Современные серво стабилизаторы напряжения поставляются с микроконтроллерной / микропроцессорной схемой управления для обеспечения интеллектуального управления пользователями.

Различные типы серво стабилизаторов напряжения

Различные типы серво стабилизаторов напряжения:

Однофазные серво стабилизаторы напряжения

В однофазных стабилизаторах напряжения с сервоприводом стабилизация напряжения достигается с помощью серводвигателя, подключенного к переменному трансформатору.

Трехфазные сбалансированные серво стабилизаторы напряжения

В трехфазных стабилизированных стабилизаторах напряжения с сервоуправлением стабилизация напряжения достигается с помощью серводвигателя, подключенного к 03 автотрансформаторам, и общей цепи управления. Выходные данные автотрансформаторов варьируются для достижения стабилизации.

Трехфазные несбалансированные серво стабилизаторы напряжения

В трехфазных несимметричных стабилизаторах напряжения с сервоприводом стабилизация напряжения достигается с помощью серводвигателя, подключенного к 03 автотрансформаторам и 03 независимым цепям управления (по одной на каждый автотрансформатор).

Использование и преимущества серво стабилизатора напряжения

  • Они быстро реагируют на колебания напряжения
  • Они имеют высокую точность стабилизации напряжения
  • Они очень надежные
  • Они могут выдерживать скачки напряжения

Недостатки серво стабилизатора напряжения

  • Они нуждаются в периодическом обслуживании
  • Чтобы обнулить ошибку, серводвигатель должен быть выровнен. Выравнивание сервомотора требует умелых рук.

Стабилизаторы статического напряжения

Рис. 13 — Статические стабилизаторы напряжения

Статический выпрямитель напряжения не имеет движущихся частей, как в случае серво стабилизаторов напряжения. Для стабилизации напряжения используется силовая электронная схема преобразователя. Эти статические стабилизаторы напряжения имеют очень высокую точность, а стабилизация напряжения находится в пределах ± 1%.

Стабилизатор статического напряжения содержит трансформатор понижения и повышения, силовой преобразователь с изолированным затвором (IGBT), микроконтроллер, микропроцессор и другие необходимые компоненты.

Как работает статический стабилизатор напряжения

Микроконтроллер / микропроцессор управляет IGBT-преобразователем питания для генерации требуемого уровня напряжения с использованием метода «широтно-импульсной модуляции». В методе «Импульсная широтно-импульсная модуляция» преобразователи питания в режиме переключения используют силовой полупроводниковый переключатель (например, MOSFET) для управления трансформатором для получения требуемого выходного напряжения. Это сгенерированное напряжение затем подается на первичную обмотку трансформатора понижения & повышения. Преобразователь мощности IGBT также контролирует фазу напряжения. Он может генерировать напряжение, которое может быть в фазе или на 180 градусов не в фазе по отношению к входному источнику питания, что, в свою очередь, позволяет ему контролировать, нужно ли добавлять или вычитать напряжение в зависимости от повышения или понижения уровня входного питания.

Рис. 15 — Принципиальная схема статического стабилизатора напряжения

Как только микропроцессор обнаруживает падение уровня напряжения, он посылает сигнал широтно-импульсной модуляции на преобразователь мощности IGBT. Преобразователь мощности IGBT, соответственно, генерирует напряжение, аналогичное разности напряжений, на которую уменьшился входной источник питания. Это генерируемое напряжение находится в фазе с входным источником питания. Затем это напряжение подается на первичную обмотку трансформатора Понижения & Повышения. Поскольку вторичная катушка трансформатора Понижения & Повышения подключена к входному источнику питания, напряжение, наведенное во вторичной катушке, будет добавлено к входному источнику питания. И поэтому стабилизированное повышенное напряжение будет затем подаваться на нагрузку.

Аналогично, как только микропроцессор обнаруживает повышение уровня напряжения, он посылает сигнал широтно-импульсной модуляции на преобразователь мощности IGBT. Соответственно, IGBT-преобразователь мощности генерирует напряжение, аналогичное разности напряжений, на которую уменьшился входной источник питания. Но на этот раз генерируемое напряжение будет на 180 градусов не в фазе по отношению к входному источнику питания. Затем это напряжение подается на первичную обмотку трансформатора Понижения & Повышения. Поскольку вторичная катушка трансформатора Понижения & Повышения подключена к входному источнику питания, напряжение, которое было наведено во вторичной катушке, теперь будет вычитаться из входного источника питания. И поэтому стабилизированное пониженное напряжение будет подаваться на нагрузку.

Использование / Преимущества статических стабилизаторов напряжения

  • Они очень компактны по размеру.
  • Они очень быстро реагируют на колебания напряжения.
  • Они имеют очень высокую точность стабилизации напряжения.
  • Поскольку нет движущейся части, она почти не требует технического обслуживания.
  • Они очень надежные.
  • Их эффективность очень высока.

Недостатки статического стабилизатора напряжения

Они дорогостоящие по сравнению со своими аналогами.

В чем разница между стабилизатором напряжения и регулятором напряжения?

Оба звучат одинаково. Они оба выполняют одинаковую функцию стабилизации напряжения. Однако то, как они это делают, приносит разницу. Основное функциональное отличие стабилизатора напряжения от регулятора напряжения:

Стабилизатор напряжения — это устройство, которое подает постоянное напряжение на выход без каких-либо изменений входного напряжения. В то время как,

Регулятор напряжения — это устройство, которое подает постоянное напряжение на выход без каких-либо изменений тока нагрузки.

Как выбрать лучший стабилизатор напряжения для вашего дома? Руководство по покупке

При покупке стабилизатора напряжения необходимо учитывать различные факторы. В противном случае вы можете столкнуться со стабилизатором напряжения, который может работать хуже или лучше. Чрезмерное выполнение не повредит, но это будет стоить вам лишних долларов. Так почему бы не выбрать такой стабилизатор напряжения, который может удовлетворить ваши требования и сохранить ваш карман тоже.

Различные факторы, которые играют важную роль в выборе стабилизатора напряжения

Различные факторы, которые играют жизненно важную роль и требуют рассмотрения перед выбором стабилизатора напряжения:

  • Требуемая мощность прибора (или группы приборов)
  • Тип прибора
  • Уровень колебаний напряжения в вашем районе
  • Тип стабилизатора напряжения
  • Рабочий диапазон стабилизатора напряжения, который вам нужен
  • Перегрузка по повышению / пониженному напряжению
  • Тип схемы стабилизации / управления
  • Тип монтажа для вашего стабилизатора напряжения

Пошаговое руководство по выбору и покупке стабилизатора напряжения для вашего дома

Вот основные шаги, которые вы должны выполнить, чтобы выбрать лучший выпрямитель напряжения для вашего дома:

  • Проверьте номинальную мощность устройства, для которой вам нужен стабилизатор напряжения. Номинальная мощность указана на задней панели устройства в виде наклейки или фирменной таблички. Это будет в киловаттах (KW). Обычно номинальная мощность стабилизатора напряжения указывается в кВА. Переведите его в киловатт (кВт).

(КВт = кВА * коэффициент мощности)

  • Подумайте о том, чтобы сохранить дополнительную маржу в 25-30% от номинальной мощности стабилизатора. Это даст вам дополнительную возможность добавить любое устройство в будущем.
  • Проверьте предел допуска колебаний напряжения. Если это соответствует вашим потребностям, вы готовы идти вперед.
  • Проверьте требования к монтажу и размер, который вам нужен.
  • Вы можете спросить и сравнить дополнительные функции в одном и том же ценовом диапазоне разных марок и моделей.

Практический пример для лучшего понимания

Предположим, вам нужен стабилизатор напряжения для вашего телевизора. Давайте предположим, что ваш телевизор имеет номинальную мощность 1 кВА. Допустимая надбавка 30% на 1 кВА составляет 300 Вт. Добавляя оба варианта, вы можете приобрести стабилизатор напряжения мощностью 1,3 кВт (1300 Вт) для вашего телевизора.

Видео совет при выборе стабилизатор напряжения

Самый важный совет при покупке стабилизатора напряжения

meanders.ru

Нюансы выбора электромеханического стабилизатора напряжения: виды и особенности, что нужно знать перед покупкой

Электромеханический стабилизатор напряжения является наиболее популярным вариантом защиты потребителей электроэнергии от аномалий входного напряжения в сетях питания различного назначения.

Устройства этого класса осуществляют нормализацию параметров тока последовательной активацией или отключением витков автотрансформатора с помощью регулирующего электромеханического шагового сервопривода (электродвигателя).

Высокое качество напряжения на выходе сервоприводного устройства стабилизации реализуется за счёт плавности и равномерности нормализации с погрешностью в рамках всего 1-3%, а также отсутствия искажений токовой синусоиды.

Кроме того, стабилизаторы электромеханического типа проявляют невысокую чувствительность к внешним помехам, а также входным характеристикам тока. В результате они прекрасно подходят для сетей с регулярными скачками или проседаниями напряжения и обеспечивают стабильный режим работы питающегося от сети оборудования.

Схема устройства и главные особенности

Основу схемы сервоприводного стабилизирующего устройства составляет пара силовых элементов:

  1. Автоматический трансформатор с тороидальным ферромагнитным сердечником;
  2. Вольтодобавочный вспомогательный транформатор.

Компенсация отклонений входного напряжения от нормативного выходного показателя выполняется путём наращивания или уменьшения коэффициента трансформации.

Управляет работой устройства микропроцессорный блок. Он анализирует параметры тока на входе, вычисляет изменения, необходимые для их нормализации, и отдаёт команды сервоприводу. Последний имеет специальный подвижный контакт, который в соответствии с указаниями блока управления перемещается по трансформаторным обмоткам, отключая или активируя определённое количество их витков для поддержки заданного выходного напряжения.

По типу исполнения сервоприводные стабилизаторы напряжения могут быть:

  • Напольными (стационарными);
  • Переносными.

В зависимости от количества фаз сетевого питания и параметров стабилизации, нормализаторы, принадлежащие классу электромеханических, бывают:

  • Однофазными;
  • Трёхфазными со среднефазной регулировкой выходного напряжения;
  • Трёхфазными с независимой стабилизации параметров тока на каждой фазе.

Разновидностью электромеханических стабилизаторов напряжения являются так называемые электродинамические устройства. В отличие от первых, вторые имеют не щёточный, а роликовый подвижный контакт, выполненный из графита. Это обеспечивает снижение уровня шума при работе, снижает риск выхода системы из строя при отклонениях параметров входного тока за рамки критического диапазона и в целом обеспечивает высокую стабильность работы устройства стабилизации и увеличивает срок его службы.

Принцип действия и область применения

Работает однофазный электромеханический стабилизатор напряжения по следующему принципу:

  1. При подключении устройства к сети, блок управления устанавливает фактическую величину входного напряжения и рассчитывает коэффициент трансформации, необходимый для достижения требуемого на выходе показателя;
  2. В соответствии с выполненными расчётами, управляющий блок подаёт сигнал электродвигателю, который приводит в движение щёточные или роликовые коммутационные контакты;
  3. Посредством сервоприводной коммутации последовательно активируется или отключается определённое число витков основной и вторичной (вольтодобавочной) трансформаторных обмоток. В результате достигается необходимый коэффициент трансформации и на выход стабилизатора подаётся стабильное без помех напряжение 220В.

Трёхфазное устройство стабилизации сервоприводного типа включает 3 однофазных стабилизирующих устройства с одинаковыми техническими характеристиками, совместная работа которых обеспечивается посредством опции синхронизации. Трёхфазные системы стабилизации применяются для защиты от аномалий входного сетевого тока потребителей с соответствующим количеством фаз и низкими требованиями к скорости стабилизации.

Однофазные стабилизаторы с электромеханическим принципом работы широко применяются в быту с целью обеспечения стабильного напряжения питания для:

  • Холодильников;
  • Отопительных котлов;
  • Радиаторных систем обогрева;
  • Телевизионной и радиотехники;
  • Музыкальной аппаратуры (усилителей, звуковых процессоров, акустики и пр.);
  • Компьютеров и серверных систем;
  • Сетей освещения и отдельного осветительного оборудования;
  • Стиральных машин;
  • Бытовых и кухонных электроприборов и т.д.

К правильной синусоиде входного тока проявляют высокую чувствительность электромоторы и электрическое оборудование с трансформаторами. Именно поэтому электромеханический стабилизатор является оптимальным вариантом для защиты таких устройств от искажений частоты и других характеристик выходного напряжения. Также стоит отметить, что стабилизаторы этого класса идеально подходят для подключения к сетям питания со стабильным характером отклонений параметров тока от нормативного значения.

Плюсы и минусы

В сравнении с другими типами систем нормализации параметров сетевого тока, электромеханический стабилизатор напряжения обладает рядом преимуществ:

  1. Плавность регулировки параметров выходного тока;
  2. Высокая точность выравнивания характеристик напряжения на выходе (погрешность до 3%);
  3. Устойчивость к перегрузкам (500-1000%);
  4. Широкий диапазон температуры окружающей среды (-25…+50°C);
  5. Большой рабочий ресурс функциональной;
  6. Сравнительно невысокая стоимость.

Есть у сервоприводных стабилизаторов и свои недостатки, в список которых можно включить:

  1. Быстрый износ движущихся компонентов (требуют замены минимум раз в год);
  2. Высокий уровень шума при работе;
  3. Большой вес;
  4. Сравнительно невысокий КПД (около 97% в сравнении с электронными стабилизаторами, эффективность которых превышает 99%);
  5. Малая скорость реакции на изменения входных характеристик тока (в 5 раз меньше, чем у релейных, и в 25 раз меньше, чем у электронных стабилизаторов).

Минусы сервоприводных устройств стабилизации очень важно учитывать при подборе модели для защиты конкретных потребителей электроэнергии. Неправильное решение может привести к выходу из строя как самого стабилизирующего устройства, так и подключённого к нему оборудования.

Стабилизатор напряжения электромеханического типа рекомендуется выбирать в соответствии с:

  • Характером аномалий входного тока обслуживаемой сети (интенсивность, частота, величина всплесков или проседаний напряжения);
  • Суммарной мощностью, потребляемой подключенным к нормализатору оборудованием.

При грамотном расчёте потребляемой мощности и более-менее точном определении характеристик тока в сети, сервоприводные приборы обеспечивают стабильную и бесперебойную работу подключённого оборудования, являясь наиболее экономичным вариантом его защиты от перебоев питания и перегрузок.

voltobzor.ru


Смотрите также


2012-2020 © Содержание, карта сайта.