эффективные решения для вашего бизнеса  
Дон Изолятор моб: +7 988 540 32 29
тел: (863) 219-12-79
факс: (863) 219-12-79
e-mail: [email protected]
гарантированная защита и надежность
Продукция Контакты Информация
Информация

Вычисление площади треугольника по трем сторонам


Площадь треугольника. Онлайн-калькулятор

Онлайн-калькулятор для расчета площади треугольника поможет Вам найти площадь треугольника несколькими способами в зависимости от известных данных. Наш калькулятор не просто рассчитает площадь треугольника, но и покажет подробное решение, которое будет показано под калькулятором. Поэтому данный калькулятор удобно использовать не только для быстрых расчетов, но и для проверки своих вычислений. С помощью данного калькулятора вы сможете найти площадь треугольника по следующим формулам: через основание и высоту, через две стороны и угол, по трем сторонам (формула Герона), через радиус вписанной окружности, через радиус описанной окружности.

Треугольник – это геометрическая фигура, которая образована тремя отрезками. Эти отрезки называются сторонами треугольниками, а точки соединения отрезков – вершинами треугольника. В зависимости от соотношения сторон треугольники бывают нескольких видов: равнобедренный треугольник (две стороный треугольника равны между собой, эти стороны называются боковыми сторонами, а третья сторона называется основанием треугольника), равносторонний треугольник (у треугольника все три стороны равны), прямоугольный треугольник (один угол треугольника прямой).

Как найти площадь треугольника?

Найти площадь треугольника очень просто, достаточно воспользоваться нашим калькулятором или рассчитать самостоятельно, воспользовавшись формулой площади треугольника. В зависимости от того, какие данные известны, для расчета площади треугольника использует несколько способов:

1) через основание и высоту

a – основание треугольника, h – высота треугольника.

2) через две стороны и угол

a, b – стороны треугольника, α – угол между сторонами.

3) По трем сторонам. Формула Герона.

a, b, с – стороны треугольника, p – полупериметр треугольника.

4) Через радиус вписанной окружности.

a, b, с – стороны треугольника, p – полупериметр треугольника,

r – радиус вписанной окружности.

5) Через радиус описанной окружности.

a, b, с – стороны треугольника, R – радиус описанной окружности.

Вы всегда сможете проверить правильность расчета площади треугольника с помощью нашего калькулятора.

calc.by

Калькулятор площади треугольника по трем сторонам

Как известно, треугольником принято называть плоскую геометрическую фигуру, многоугольник, который ограничен минимальным количеством сторон. Также, стоит помнить, что всякий многоугольник делится на определённое количество треугольников.

Для этого необходимо соединить его вершины такими отрезками, которые не пересекали бы его стороны. Вот почему, зная как рассчитать площадь треугольника, Вы можете получить площадь большинства геометрических фигур.

Формула Герона для вычисления площади треугольника по трем сторонам

В том случае если нам известны параметры каждой стороны нашего треугольника, мы можем рассчитать площадь фигуры по формуле Герона. Для её упрощения следует применить новую величину, так называемый полупериметр, который является суммой всех сторон треугольника, которая разделена пополам.

После получения значения полупериметра, Вы можете приступать к расчёту площади по руководствуясь следующей формулой: S = sqrt(p(p-a)(p-b)(p-c)), в которой «p» – полупериметр, «a,b,c» – стороны фигуры и sqrt –квадратный корень.

Пример вычисления площади треугольника по трем сторонам

Рассмотрим на примере вычисление площади треугольника по формуле Герона.

p = (a + b + c)/ 2  где p – половина периметра треугольника.

таким образом S = √ p ( p – a ) ( p – b ) ( p – c ) .

(Это также называется формулой Герона)

Дано:

Треугольник со сторонами a = 4, b = 5, c = 3.

Задание: Найдите площадь треугольника

Решение:

Используйте формулу половинного периметра:

p = (3 + 4 + 5)/ 2= 6

Полученные значения подставляем в формулу Герони:

S = √ 6 ( 6 – 3 ) ( 6 – 4 ) ( 6 – 5 ) =

√ 6 ⋅ 3 ⋅ 2 ⋅ 1 = √ 36 =6

Ответ: 6

Историческая справка

Формула приписывается Герону, живущему в  Александрии, который был греческим инженером и математиком в 10 – 70 годах нашей эры

Среди прочего, он разработал  первый известный паровой двигатель, но его рассматривали как игрушку!

Как вычислить площадь треугольника. Видео.

fox-calculator.ru

Площадь треугольника по трем сторонам, все формулы

Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?! Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Существует много формул для вычисления площади треугольника.

Если известны длины всех сторон треугольника, то для вычисления площади треугольника удобно пользоваться формулой Герона:

   

где – стороны треугольника, а – его полупериметр.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Площадь треугольника — формулы и калькулятор онлайн

Задача нахождения площади треугольника довольно распространена не только в науке, но и в быту. Для вас мы разработали 21 калькулятор для нахождения площади любого треугольника — равнобедренного, равностороннего, прямоугольного или обыкновенного.

Площадь треугольника

Площадь треугольника через две стороны и угол между ними

{S= \dfrac{1}{2} \cdot a \cdot b \cdot sin (\alpha)}

Формула для нахождения площади треугольника через 2 стороны и угол:

{S= \dfrac{1}{2} \cdot a \cdot b \cdot sin (\alpha)}, где a, b — стороны треугольника, α — угол между ними.

Площадь треугольника через основание и высоту

{S= \dfrac{1}{2} \cdot a \cdot h}

Формула для нахождения площади треугольника через основание и высоту:

{S= \dfrac{1}{2} \cdot a \cdot h}, где a — основание треугольника, h — высота треугольника.

Площадь треугольника через радиус описанной окружности и 3 стороны

{S= \dfrac{a \cdot b \cdot c}{4 \cdot R}}

Формула для нахождения площади треугольника через описанную окружность и стороны:

{S= \dfrac{a \cdot b \cdot c}{4 \cdot R}}, где a, b, c — стороны треугольника, R — радиус описанной окружности.

Площадь треугольника через радиус вписанной окружности и 3 стороны

{S= r \cdot \dfrac{a + b + c}{2}}

Формула для нахождения площади треугольника через вписанную окружность и стороны:

{S= r \cdot \dfrac{a + b + c}{2}}, где a, b, c — стороны треугольника, r — радиус вписанной окружности.

Формулу можно переписать иначе, если учитывать, что {\dfrac{a + b + c}{2}} — полупериметр треугольника. В этом случае формула будет выглядеть так: S = {r \cdot p}, где p — полупериметр треугольника.

Площадь треугольника через сторону и два прилежащих угла

{S= \dfrac{a^2}{2} \cdot \dfrac{sin(\alpha) \cdot sin(\beta)}{sin(\gamma)}}{\gamma = 180 - (\alpha + \beta)}

Формула для нахождения площади треугольника через сторону и 2 прилежащих угла:

{S= \dfrac{a^2}{2} \cdot \dfrac{sin(\alpha) \cdot sin(\beta)}{sin(\gamma)}}, где a — сторона треугольника, α и β — прилежащие углы, γ — противолежащий угол, который можно найти по формуле:

{\gamma = 180 — (\alpha + \beta)}

Площадь треугольника по формуле Герона

{S= \sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}}{p= \dfrac{a+b+c}{2}}

Формула для нахождения площади треугольника по формуле Герона (если известны 3 стороны):

{S= \sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}}, где a, b, c — стороны треугольника, p — полупериметр треугольника, который можно найти по формуле p = {\dfrac{a + b + c}{2}}

Площадь прямоугольного треугольника

Площадь прямоугольного треугольника через 2 стороны

{S= \dfrac{1}{2} \cdot a \cdot b}

Формула для нахождения площади прямоугольного треугольника по двум сторонам:

{S= \dfrac{1}{2} \cdot a \cdot b}, где a, b — стороны треугольника.

Площадь прямоугольного треугольника через гипотенузу и острый угол

{S= \dfrac{1}{4} \cdot c^2 \cdot sin (2 \alpha)}

Формула для нахождения площади прямоугольного треугольника по гипотенузе и острому углу:

{S= \dfrac{1}{4} \cdot c^2 \cdot sin (2 \alpha)}, где c — гипотенуза треугольника, α — любой из прилегающих острых углов.

Площадь прямоугольного треугольника через катет и прилежащий угол

{S= \dfrac{1}{2} \cdot a^2 \cdot tg (\alpha)}

Формула для нахождения площади прямоугольного треугольника по катету и прилежащему углу:

{S= \dfrac{1}{2} \cdot a^2 \cdot tg (\alpha)}, где a — катет треугольника, α — прилежащий угол.

Площадь прямоугольного треугольника через радиус вписанной окружности и гипотенузу

{S= r \cdot (r + c)}

Формула для нахождения площади прямоугольного треугольника по радиусу вписанной окружности и гипотенузе:

{S= r \cdot (r+c)}, где c — гипотенуза треугольника, r — радиус вписанной окружности.

Площадь прямоугольного треугольника через вписанную окружность

{S= c_{1} \cdot c_{2}}

Формула для нахождения площади прямоугольного треугольника по вписанной окружности:

{S= c_{1} \cdot c_{2}}, где c1 и c2 — части гипотенузы.

Площадь прямоугольного треугольника по формуле Герона

{S= (p-a) \cdot (p-b)}{p= \dfrac{a+b+c}{2}}

Формула Герона для прямоугольного треугольника выглядит так:

{S= (p-a) \cdot (p-b)}, где a, b — катеты треугольника, p — полупериметр прямоугольного треугольника, который рассчитывается по формуле p = {\dfrac{a + b + c}{2}}

Площадь равнобедренного треугольника

Площадь равнобедренного треугольника через основание и сторону

{S=\dfrac{b}{4} \sqrt{4 \cdot a^2-b^2}}

Формула площади равнобедренного треугольника через основание и сторону:

{S=\dfrac{b}{4} \sqrt{4 \cdot a^2-b^2}}, где a — боковая сторона треугольника, b — основание треугольника

Площадь равнобедренного треугольника через основание и угол

{S=\dfrac{1}{2} \cdot a \cdot b \cdot sin( \alpha)}

Формула площади равнобедренного треугольника через основание и угол:

{S=\dfrac{1}{2} \cdot a \cdot b \cdot sin( \alpha)}, где a — боковая сторона треугольника, b — основание треугольника, α — угол между основанием и стороной.

Площадь равнобедренного треугольника через основание и высоту

{S=\dfrac{1}{2} \cdot b \cdot h}

Формула площади равнобедренного треугольника через основание и высоту:

{S=\dfrac{1}{2} \cdot b \cdot h}, где b — основание треугольника, h — высота, проведенная к основанию.

Площадь равнобедренного треугольника через боковые стороны и угол между ними

{S=\dfrac{1}{2} \cdot a^2 \cdot sin(\alpha)}

Формула площади равнобедренного треугольника через боковые стороны и угол между ними:

{S=\dfrac{1}{2} \cdot a^2 \cdot sin(\alpha)}, где a — боковая сторона треугольника, α — угол между боковыми сторонами.

Площадь равнобедренного треугольника через основание и угол между боковыми сторонами

{S=\dfrac{b^2}{4 \cdot tg \dfrac{\alpha}{2}}}

Формула площади равнобедренного треугольника через основание и угол между боковыми сторонами:

{S=\dfrac{b^2}{4 \cdot tg \dfrac{\alpha}{2}}}, где b — основание треугольника, α — угол между боковыми сторонами.

Площадь равностороннего треугольника

Площадь равностороннего треугольника через радиус описанной окружности

{S= \dfrac{3 \sqrt{3} \cdot R^2}{4}}

Формула площади равностороннего треугольника через радиус описанной окружности:

{S= \dfrac{3 \sqrt{3} \cdot R^2}{4}}, где R — радиус описанной окружности.

Площадь равностороннего треугольника через радиус вписанной окружности

{S= 3 \sqrt{3} \cdot r^2}

Формула площади равностороннего треугольника через радиус вписанной окружности:

{S= 3 \sqrt{3} \cdot r^2}, где r — радиус вписанной окружности.

Площадь равностороннего треугольника через сторону

{S= \dfrac{\sqrt{3} \cdot a^2}{4}}

Формула площади равностороннего треугольника через сторону:

{S= \dfrac{\sqrt{3} \cdot a^2}{4}}, где a — сторона треугольника.

Площадь равностороннего треугольника через высоту

{S= \dfrac{h^2}{\sqrt{3}}}

Формула площади равностороннего треугольника через высоту:

{S= \dfrac{h^2}{\sqrt{3}}}, где h — высота треугольника.

Просмотров страницы: 67125

mnogoformul.ru

Площадь треугольника по формуле Герона (по трем сторонам)

Задача нахождения площади треугольника довольно часто встает не только перед учениками в школе, но и перед архитекторами, инженерами, проектировщиками. Один из способов расчета площади треугольника — использование формулы Герона. Для того, что бы найти площадь треугольника, необходимо знать три его стороны. Вы можете воспользоваться нашим онлайн калькулятором или же использовать формулу и произвести расчет самостоятельно.

Как найти площадь треугольника по трем сторонам

Сначала рассчитывают периметр треугольника. Напоминаем, что периметр — это сумма длин сторон. Предположим, что наш треугольник имеет стороны длиной 15, 13 и 17 сантиметров. Тогда его периметр будет равен:

P = a + b + c = 15 + 13 + 17 = 45см.

После этого находим полупериметр, т. е. делим периметр на 2:

p = P / 2 = 45 / 2 = 22,5 см.

После этого подставляем значения в формулу Герона и получаем результат:

S = 93.899880191617 см2

Ваша оценка

[Оценок: 15 Средняя: 4.6]

Площадь треугольника по формуле Герона (по трем сторонам) Автор admin средний рейтинг 4.6/5 - 15 рейтинги пользователей

calculat.ru

Площадь треугольника

  • Площадь любого треугольника можно найти, зная основание и высоту. Вся простота схемы заключается в том, что высота делит основание a на две части a1 и a2, а сам треугольник – на два прямоугольных треугольника, площадь которых получается и . Тогда площадь всего треугольника будет суммой двух указанных площадей, и если мы вынесем одну вторую высоты за скобку, то в сумме мы получим обратно основание:

    Более сложный для расчетов способ – это формула Герона, для которой необходимо знать все три стороны. Для этой формулы нужно вычислить сначала полупериметр треугольника: Сама формула Герона подразумевает квадратный корень из полупериметра, умноженного поочередно на разность его с каждой из сторон.

    Следующий способ, также актуальный для любого треугольника, позволяет найти площадь треугольника через две стороны и угол между ними. Доказательство этому проистекает из формулы с высотой – проводим высоту на любую из известных сторон и через синус угла α получаем, что h=a⋅sinα . Для вычисления площади умножим половину высоты на вторую сторону.

    Другой способ – найти площадь треугольника, зная 2 угла и сторону между ними. Доказательство этой формулы достаточно простое, и наглядно видно из схемы.

    Опускаем из вершины третьего угла высоту на известную сторону и называем полученные отрезки x соответственно. Из прямоугольных треугольников видно, что первый отрезок x равен произведению котангенса угла α на высоту, а второй отрезок y – произведению котангенса угла β на эту же высоту. Дальше соединяем это вместе:

geleot.ru

Площадь треугольника по сторонам

Найти площадь треугольника по трем сторонам можно с помощью формулы Герона.

Формула Герона:

   

где p — полупериметр:

   

a, b, c — длины сторон треугольника.

Дано:

∆ ABC,

AB=c, AC=b, BC=a,

   

Доказать:

   

Доказательство:

В любом треугольнике всегда есть два острых угла.

Проведем в треугольнике ABC высоту BD при условии, что углы A и C- острые

(если треугольник ABC тупоугольный либо прямоугольный, то в качестве угла B выбираем тупой либо прямой угол).

По теореме Пифагора, из прямоугольного треугольника ABD  

   

из прямоугольного треугольника BCD —

   

Приравниваем правые части равенств:

   

BC² перенесем в правую часть, AD² — в левую:

   

   

Правую часть разложим по формуле разности квадратов:

   

Так как AD+CD=AC, то

   

   

Отсюда 

   

Сложим эти два равенства почленно и приведем правую часть к общему знаменателю:

   

   

   

   

   

   

   

   

   

   

Поскольку

   

   

   

   

то

   

   

Отсюда,

   

   

По формуле 

   

площадь треугольника ABC равна

   

Таким образом, 

   

   

Что и требовалось доказать.

www.treugolniki.ru


Смотрите также


2012-2020 © Содержание, карта сайта.